Chapitre 16

Thermodynamique: Transferts thermiques

16.1 Tran	sfert thermique par conduction
16.1.1	Définition
16.1.2	Résistance thermique et flux
16.2 Tran	sfert thermique par rayonnement
16.3 Tran	sfert thermique conducto-convectif
16.3.1	Définition
16.3.2	Loi phénoménologique de Newton
16.3.3	Loi d'évolution d'un système au contact d'un thermostat

CE chapitre est consacré à l'étude thermodynamique des transferts thermiques. Il existe en effet plusieurs mécanismes de transfert de chaleur :

- Transfert thermique par conduction
- Transfert thermique par rayonnement
- Transfert thermique conducto-convectif

Transfert thermique

Un transfert thermique est un transfert de chaleur, qui se fait toujours dans le sens de la source chaude vers la source froide.

Nous étudierons ces trois phénomènes dans chacune des trois parties qui suivent.

16.1 Transfert thermique par conduction

16.1.1 Définition

Dès lors que l'on met deux systèmes thermodynamiques de températures initiales respectives T_1 (source chaude) et T_2 (source froide), un transfert thermique se fait par **conduction**, de la source chaude vers la source froide.

Transfert thermique par conduction

Un transfert thermique par conduction est un transfert de chaleur qui se fait par contact direct entre deux systèmes thermodynamiques.

16.1.2 Résistance thermique et flux

Flux thermique par conduction

Le flux thermique (ou puissance thermique), noté ϕ_{th} , à travers la cloison séparant deux milieux de températures T_1 (source chaude) et T_2 (source froide), est donné par la relation suivante, analogue à la loi d'Ohm en électricité, faisant intervenir la résistance thermique R_{th} de la cloison :

$$\phi_{th} = \frac{T_1 - T_2}{R_{th}}$$

 ϕ_{th} est la puissance thermique (flux thermique) (en W) T_1 et T_2 les températures respectives des milieux 1 et 2 (en K) R_{th} la résistance thermique de la cloison (en K.W⁻¹)

Pour une cloison de géométrie parallélépipédique, d'épaisseur e (en m) et de surface S (en m²), la résistance thermique R_{th} est reliée à la **conductivité thermique** du matériau λ (en W.K⁻¹.m⁻¹) :

$$R_{th} = \frac{e}{\lambda S}$$

16.2 Transfert thermique par rayonnement

Transfert thermique par rayonnement

Un transfert thermique par rayonnement se fait par l'intermédiaire d'une absorption de photons issus d'un rayonnement.

PARTIE RETIRÉE POUR LE BAC 2020 - 2021

16.3 Transfert thermique conducto-convectif

16.3.1 Définition

La convection est le phénomène qui survient dans un fluide lorsque celui-ci subit un changement local de température, la chaleur se transfère alors par déplacement des molécules. En effet, lorsque la température d'un fluide augmente, sa masse volumique diminue et le fluide s'élève à cause de la poussée d'Archimède.

Transfert thermique conducto-convectif

Un transfert thermique conducto-convectif est un transfert de chaleur qui se fait par contact direct entre un système thermodynamique solide et un fluide.

16.3.2 Loi phénoménologique de Newton

Loi phénoménologique de Newton

Soit un système thermodynamique solide, en contact avec un fluide suivant une surface de contact S (en m²). La puissance thermique $\phi(t)$ conducto-convective échangée à travers la surface S est donnée par la relation suivante :

$$\phi(t) = hS\left(T_{ext} - T(t)\right)$$

 $\phi(t)$ est la puissance thermique (flux thermique) (en W)

h est le coefficient de transfert conducto-convectif (en W.K $^{-1}$.m $^{-2}$

S la surface de contact (en m^2)

 T_{ext} la température du fluide, constante, loi de l'interface (en K)

T(t) la température du système à l'instant t (en K)

16.3.3 Loi d'évolution d'un système au contact d'un thermostat

Soit un système thermodynamique solide, de capacité thermique C, plongé dans un fluide de température constante T_{ext} , ayant une surface S de contact avec le fluide. On considère l'évolution de la température T de ce système entre un instant t et un instant plus tard $t + \Delta t$.

D'après le premier principe de la thermodynamique : $\Delta U = W + Q$. Le système étant solide, il est considéré incompressible donc W = 0 et alors la variation d'énergie interne de ce système peut s'écrire :

$$\Delta U = C \left(T \left(t + \Delta t \right) - T(t) \right)$$

Cette variation d'énergie interne pendant une durée Δt peut également se relier à la puissance thermique échangée :

$$\Delta U = \phi(t) \times \Delta t$$

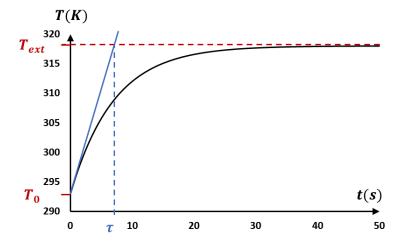
Ainsi, on obtient en divisant par Δt :

$$C \times \frac{T\left(t + \Delta t\right) - T(t)}{\Delta t} = hS\left(T_{ext} - T(t)\right)$$

Or par définition du nombre dérivé :

$$\lim \Delta t \to 0 \frac{T(t + \Delta t) - T(t)}{\Delta t} = \frac{dT(t)}{dt}$$

On obtient ainsi l'équation différentielle de la température du solide plongé dans le fluide de température T_{ext} .


Loi d'évolution au contact d'un thermostat

L'équation différentielle vérifiée par la température T(t) du solide plongé dans un fluide de température constante T_{ext} est la suivante :

$$\frac{dT(t)}{dt} + \frac{hS}{C}T(t) = \frac{hS}{C}T_{ext}$$

La solution est donnée par la relation suivante, où T_0 représente la température initiale du solide, et $\tau = \frac{C}{hS}$ le temps caractéristique (en s) :

$$T(t) = T_{ext} + (T_0 - T_{ext}) e^{-t/\tau}$$

 $\textbf{Figure 16.1} - \text{Exemple d'évolution de la température d'un solide au contact d'un fluide de température constante} \\ T_{ext}$