∽ Corrigé du baccalauréat S Métropole-La Réunion septembre 2007 🔊

EXERCICE 1 5 points

1. Restitution organisée de connaissances

P est vraie : il suffit de reprendre la définition du nombre dérivé de la fonction x^n en un point x_0 . L'application du dévoppement de $(x_0+h)^n$ par la formule du binôme permet de montrer que $f'(x_0) = nx_0^{n-1}$.

Q est fausse : on a ici la dérivée d'une fonction composée et $f'(x) = nu'u^{n-1}$.

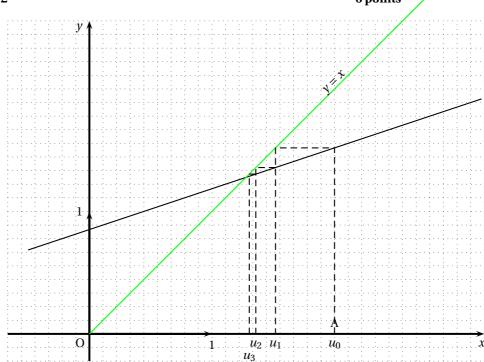
2. **a.** Avec
$$h(x) = g(\cos x)$$
, $h'(x) = (\cos x)'g'(\cos x) = -\sin x \times \frac{1}{\sqrt{1 - \cos^2 x}} = \frac{-\sin x}{\sqrt{\sin^2 x}}$.

Comme $x \in]-\pi$; 0[, $\sin x < 0$, donc $\sqrt{\sin^2 x} = -\sin x$. Finalement $h'(x) = \frac{-\sin x}{-\sin x} = 1$.

b.
$$h'(x) = 1$$
 implique $h(x) = x + k$, avec $k \in \mathbb{R}$.
$$h\left(-\frac{\pi}{2}\right) = g\left(\cos\left(-\frac{\pi}{2}\right)\right) = g(0) = 0. \text{ Donc } 0 = -\frac{\pi}{2} + k \iff k = \frac{\pi}{2}.$$

Conclusion : sur] – π ; 0[, $h(x) = x + \frac{\pi}{2}$.

EXERCICE 2



- 1.
 - **b.** Si la suite est convergente, alors $\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} u_{n+1} = \ell$.

La relation $u_{n+1} = \frac{1}{3}u_n + \frac{23}{27}$ donne par passage à la limite $\ell = \frac{1}{3}\ell + \frac{23}{27} \iff \frac{2}{3}\ell = \frac{23}{27} \iff \ell = \frac{23}{18}$.

$$\frac{23}{27} \iff \frac{2}{3}\ell = \frac{23}{27} \iff \ell = \frac{\overline{23}}{18}.$$

c. Par récurrence :

- Initialisation : $u_0 = 2 = \frac{36}{18} \ge \frac{23}{18}$.
- Hérédité: supposons que $u_n \geqslant \frac{23}{18}$; alors $\frac{1}{3}u_n \geqslant \frac{1}{3} \times \frac{23}{18}$ soit $\frac{1}{3}u_n \geqslant \frac{23}{54}$. Puis $\frac{1}{3}u_n + \frac{23}{27} \geqslant \frac{23}{54} + \frac{23}{27} \iff u_{n+1} \geqslant \frac{3 \times 23}{3 \times 18} \iff u_{n+1} \geqslant \frac{23}{18}$.

On a donc bien démontré que pour tout naturel n, $u_n \geqslant \frac{23}{18}$.

d. Monotonie:

On la démontre par récurrence :

- Initialisation: $u_0 = 2$ et $u_1 = \frac{2}{3} + \frac{23}{27} = \frac{41}{27} < \frac{54}{27} = u_0$. Donc $u_0 > u_1$.
- _ Hérédité

Supposons qu'il existe un naturel p tel que $u_{p-1} > u_p$. Par croissance de la fonction f sur \mathbb{R} , on a $f(u_{p-1}) > f(u_p) \iff u_p <> u_{p+1}$.

Conclusion : on a démontré que pour tout $n \in \mathbb{N}$, $u_n > u_{n+1}$.

La suite (u_n) est donc minorée et décroissante : elle est donc convergente ; on sait d'après ce qui précède que la limite de cette suite est $\frac{23}{18}$.

2. **a.** Soit
$$S_n = \sum_{k=2}^{n+1} \frac{1}{10^k}$$
.
$$S_n = \frac{1}{10^2} + \frac{1}{10^3} + \cdots + \frac{1}{10^{n+1}} + \frac{1}{10^{n+1}}$$

$$\frac{1}{10}S_n = \frac{1}{10^3} + \cdots + \frac{1}{10^{n+1}} + \frac{1}{10^{n+1}}$$
Par différence on obtient $\frac{9}{10}S_n = \frac{1}{10^2} - \frac{1}{10^{n+2}} = \frac{1}{10}\left(10 - \frac{1}{10^n}\right) \iff S_n = \frac{1}{90}\left(1 - \frac{1}{10^n}\right)$.

- **b.** On a $v_1 = 1, 2 + 7 \times \frac{1}{10^2}$; $v_2 = 1, 2 + 7\left(\frac{1}{10^2} + \frac{1}{10^3}\right)$ et pour tout $n \in \mathbb{N}$, $v_n = 1, 2 + 7\left(\frac{1}{10^2} + \frac{1}{10^3} + \dots + \frac{1}{10^{2n+1}}\right) = 1, 2 + 7 \times \frac{1}{90}\left(1 \frac{1}{10^n}\right)$. Comme $\lim_{n \to +\infty} \frac{1}{10^n} = 0$, $\lim_{n \to +\infty} v_n = 1, 2 + \frac{7}{90} = \frac{12}{10} + \frac{7}{90} = \frac{115}{90} = \frac{23}{18}$. Cette limite est bien rationnelle.
- 3. Suites adjacentes?

On a vu que la suite (u_n) est décroissante.

De plus $v_{n+1} - v_n = \frac{7}{10^{n+2}} > 0$: la suite (v_n) est donc croissante.

Enfin ces deux suites ont la même limite $\frac{23}{18}$, donc $\lim_{n \to +\infty} (u_n - v_n) = 0$.

Conclusion: ces deux suites sont adjacentes.

EXERCICE 3 5 points

1. On a
$$Z = \frac{z_1}{z_2} = \frac{\sqrt{2} + i\sqrt{6}}{2 + 2i} = \frac{\sqrt{2}}{2} \cdot \frac{1 + i\sqrt{3}}{1 + i} = \frac{\sqrt{2}}{2} \cdot \frac{(1 + i\sqrt{3})(1 - i)}{(1 + i)(1 - i)} = \frac{\sqrt{2}}{2} \cdot \frac{1 + \sqrt{3} - i + i\sqrt{3}}{2} = \frac{\sqrt{2}}{4} \left[1 + \sqrt{3} + i\left(\sqrt{3} - 1\right) \right].$$

2. Modules et arguments :

$$-|z_1|^2 = 2 + 6 = 8 \Rightarrow |z_1| = 2\sqrt{2}. \text{ On a donc } z_1 = 2\sqrt{2} \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\sqrt{2}e^{i\frac{\pi}{3}}. \text{ Donc } arg(z_1) = \frac{\pi}{3} [2\pi].$$

- On a de même
$$|z_2| = 2\sqrt{2}$$
, puis $z_2 = 2\sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}e^{i\frac{\pi}{4}}$.

Donc
$$arg(z_2) = \frac{\pi}{4} [2\pi].$$

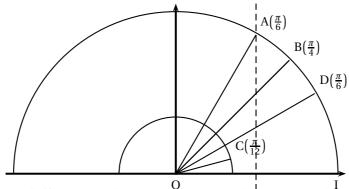
- Il suit
$$Z = \frac{2\sqrt{2}}{2\sqrt{2}} e^{i(\frac{\pi}{3} - \frac{\pi}{4})} = e^{i\frac{\pi}{12}}.$$

Donc
$$|Z| = 1$$
 et $\arg(Z) = \frac{\pi}{12}$ [2 π].

3. On déduit des deux questions précédentes que $Z = \cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)$ et par identification :

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}}{2}\left(1 + \sqrt{3}\right) \text{ et } \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}}{2}\left(\sqrt{3} - 1\right)$$

4. On place facilement le point B(2; 2):



Le point A d'affixe z_1 est obtenu en construisant la médiatrice du segment [OI].

Le point D est obtenu en construisant la bissectrice de \widehat{IOA} .

Le point C avec la bissectrice de IOD et le cercle de centre O et de rayon 1.

5. Le module : $|Z^{2007}| = |Z|^{2007} = 1^{2007} = 1$.

L'argument :
$$\arg(Z^{2007}) = 2007 \times \frac{\pi}{12} \frac{669\pi}{4} = \frac{672\pi - 3\pi}{4} = 2\pi - 3\frac{\pi}{4} = -\frac{3\pi}{4}$$
.

On a donc
$$Z^{2007} = e^{-\frac{3\pi}{4}} = \cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$
.

EXERCICE 3 5 points

Enseignement de spécialité

1	a.	а	1	2	3	4	5	6
1.		у	1	4	5	2	3	6

- **b.** On vient de voir que $5 \times 3 \equiv 1 \pmod{7}$ donc $3x \equiv 5 \pmod{7} \iff 5 \times 3x \equiv 5 \times 5 \pmod{7}$ mais comme $25 \equiv 4 \pmod{7}$ on a bien $3x \equiv 5 \pmod{7} \iff x \equiv 4 \pmod{7}$.
- **c.** L'équation $ax \equiv 0 \pmod{7}$ équivaut $7 \mid ax$ mais comme 7 est premier avec a d'après le théorème de Gauss on a : $7 \mid x$.
- **2. a.** Comme $a \times a^{p-2} = a^{p-1}$ et que a n'est pas divisible par p, d'après le petit théorème de Fermat on a $a^{p-1} \equiv 1 \pmod p$, donc a^{p-1} est solution de l'équation $ax \equiv 1 \pmod p$.
 - **b.** On a $r \equiv a^{p-2} \pmod{p}$ donc r est bien solution de l'équation $ax \equiv 1 \pmod{p}$.

Maintenant montrons l'unicité par l'absurde.

On suppose que deux entiers r_1 et r_2 de A_p sont solutions de l'équation.

On a $ar_1 \equiv ar_2 \pmod{p} \iff a^{p-2} \times ar_1 \equiv a^{p-2} \times ar_2 \pmod{p} \iff r_1 \equiv r_2 \pmod{p}$. Ainsi $r_1 - r_2$ est un multiple de p mais $r_1 - r_2$ est dans l'ensemble $\{-(p-1); -(p-2); \dots; p-1\}$, et le seul multiple de p dans cet ensemble est : 0 donc $r_1 = r_2$, ce qui montre l'unicité.

- **c.** On a $xy \equiv 0 \pmod{p}$ donc soit $p \mid x$ soit p et x sont premiers entre eux et d'après le théorème de Gauss on a : $p \mid y$.
- **d.** On sait que le reste de la division de 2^{31-2} par 31 est l'unique solution de l'équation $2x \equiv 1 \pmod{31}$, or $2^5 \equiv 1 \pmod{31}$ donc $2^{25} \equiv 1 \pmod{31}$ ainsi $2^{29} \equiv 2^4 \pmod{31}$, $2^4 = 16$ est l'unique solution de de l'équation $2x \equiv 1 \pmod{31}$ dans A_{31} .

On sait que le reste de la division de 3^{31-2} par 31 est l'unique solution de l'équation $3x \equiv 1 \pmod{31}$. Xcas irem(3^29,31) donne 21 (sinon faire tous les calculs jusqu' 3^{29}).

Pour la dernière équation, on factorise :

$$6x^2 - 5x + 1 = (2x - 1)(3x - 1)$$
 ainsi

$$6x^2 - 5x + 1 \equiv 0 \pmod{31} \iff (2x - 1)(3x - 1) \equiv 0 \pmod{31}$$
$$\iff (2x - 1) \equiv 0 \pmod{31} \text{ ou } (3x - 1) \equiv 0 \pmod{31}$$

On sait donc que les solutions de ces deux dernières équations sont dans $\mathbb{Z}: 16+31k$ et 21+31k où $k \in \mathbb{Z}$ d'après les deux équations précédentes.

EXERCICE 4 5 points

- 1. (E_0) : $y' + y = 1 \iff y' = -y + 1 \iff y = C^{-x} + 1$ où C est une constante réelle.
- **2.** f solution de (E) \iff $f' + (1 + \tan x) f = \cos x$ Or $f(x) = g(x) \cos x$. f est dérivable sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ en tant que produit de fonctions dérivables

et
$$f'(x) = g'(x) \cos x - g(x) \sin x$$

Ainsi f solution de E \iff $g' \cos x - g \sin x + (1 + \tan x)g \cos x = \cos x$

$$\iff$$
 $g' \cos x - g \sin x + \left(1 + \frac{\sin x}{\cos x}\right) g \cos x = \cos x$

 \iff $g' \cos x - g \sin x + g \cos x + g \sin x = \cos x \iff (g' + g) \cos x = \cos x$

$$\iff$$
 $g' + g = 1 \operatorname{car} \cos x \neq 0 \operatorname{pour} x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$

 \iff g est solution de (E₀).

3. f est solution de (E) donc G est solution de (E₀). Or les solutions de (E₀) sont les fonctions du type $x \mapsto C^{-x}+1$ et ainsi, puisque $f=g\cos x$, $f=(C^{-x}+1)\cos x$. De plus, $f(0)=0\Longrightarrow (Ce^0+1)\cos 0=0\Longrightarrow C=-1$

$$f$$
 est donc la fonction définie sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\operatorname{par} f(x) = (-e^{-x} + 1) \cos x$