Fonctions de référence Variation des fonctions associées

Ensemble de définition

Exercice 1

Déterminer l'ensemble de définition D_f des fonctions suivantes :

1)
$$f(x) = \frac{3 - x}{2x + 3}$$

$$4) \ f(x) = \sqrt{2-x}$$

2)
$$f(x) = \frac{2x+1}{x^2-4x}$$

$$5) \ \ f(x) = x \sqrt{4 - x^2}$$

3)
$$f(x) = \frac{1 - x^2}{1 + x^2}$$

6)
$$f(x) = \sqrt{x^2 + x}$$

7) $f(x) = \sqrt{9 + x^2}$

Résolution graphique

EXERCICE 2

On donne la fonction f définie sur \mathbb{R} par : $f(x) = 2x^3 - 6x^2 - 7x + 21$

- 1) Visualiser la fonction f sur votre calculatrice. On prendra comme fenêtre : $X \in [-2, 5; 4]$, $Y \in [-15; 30]$ et comme unité graphique 0.5 sur les abscisses et 5 sur les ordonnées.
- 2) À l'aide de votre calculatrice, répondre aux questions suivantes :
 - a) Dresser le tableau de variation de la fonction f sur \mathbb{R} .
 - b) Déterminer le nombre de solution de l'équation : f(x) = 0. On donnera une valeur approchée à 10^{-2} de chacune d'elle.
 - c) À l'aide d'un tableau de signe déterminer le signe de f suivant les valeurs de x.
 - d) Résoudre graphiquement l'inéquation : $f(x) \ge 10$. On expliquera la méthode utilisée.
 - e) Résoudre graphiquement l'inéquation : $f(x) \le -4x + 10$. On expliquera la méthode utilisée.
- 3) a) Vérifier que f(3) = 0 puis déterminer les réels a, b et c tels que : $f(x) = (x-3)(ax^2 + bx + c)$
 - b) Déterminer alors les valeurs exactes de l'équation f(x) = 0

Exercice 3

On donne la fonction f définie par : $f(x) = \frac{5x-1}{x^2+x+1}$

- 1) Déterminer l'ensemble de définition D_f de f.
- 2) Visualiser la fonction f sur votre calculatrice. On prendra comme fenêtre : $X \in [-7; 7]$, $Y \in [-7; 2]$ et comme unité graphique 1 sur les deux axes.
- 3) À l'aide de votre calculatrice, répondre aux questions suivantes :

- a) Dresser le tableau de variation de f sur D_f .
- b) Déterminer le nombre de solution de l'équation : f(x) = -4. On donnera une valeur approchée à 10^{-2} de chacune d'elle.
- c) Résoudre graphiquement l'inéquation : $f(x) \ge 1$. On expliquera la méthode utilisée.
- d) Quelle conjecture peut-on faire quant au comportement de la fonction f en $-\infty$ et en +∞. Justifier votre réponse.

Fonctions de référence

Exercice 4

Déterminer le tableau de variation des fonctions suivantes dont on précisera l'ensemble de définition:

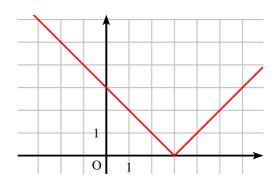
1)
$$f(x) = 2(x-4)^2 + 3$$

4)
$$f(x) = 2 + \frac{5}{x+2}$$

5) $f(x) = 1 - \frac{1}{x-5}$

2)
$$f(x) = -3(x+1)^2 - 5$$

5)
$$f(x) = 1 - \frac{1}{x - 5}$$


3)
$$f(x) = x(x - 8)$$

Exercice 5

- 1) On donne la fonction définie sur \mathbb{R} par : f(x) = |2x + 3|
 - a) Déterminer la forme de f(x) suivant les valeurs de x.
 - b) Dresser le tableau de variation.
 - c) Tracer la courbe représentative \mathscr{C}_f de la fonction f.
- 2) On donne la fonction g définie sur \mathbb{R} par : g(x) = |2 x|
 - a) Déterminer la forme de g(x) suivant les valeurs de x
 - b) Tracer sur un même repère la courbe représentative \mathscr{C}_g de la fonction g.
- 3) a) Résoudre graphiquement l'équation |2x + 3| = |2 x|.
 - b) Retrouver le résultat par le calcul.

Exercice 6

Donner l'expression le plus simple de la fonction f représentée ci-contre.

Variation des fonctions associées

Exercice 7

Décomposer les fonctions f suivantes à l'aide de fonctions usuelles puis déduire le sens de variations de f sur chacun des intervalles indiqués.

1)
$$f(x) = \sqrt{x^2 + 9}$$
, $I =]-\infty$; 0] et $J = [0; +\infty[$

2)
$$f(x) = \frac{1}{x^2 + 1}$$
, $I =]-\infty$; 0] et $J = [0; +\infty[$

3)
$$f(x) = 2\sqrt{x} + 4$$
, $I = [0; +\infty[$

4)
$$f(x) = \frac{1}{\sqrt{x+3}}$$
, $I =]-3$; $+\infty[$

5)
$$f(x) = \sqrt{(x-1)^2 + 3}$$
, $I =]-\infty$; 1] et $J = [1; +\infty[$

6)
$$f(x) = \sqrt{\frac{-2}{3-x}}, \quad I =]3; +\infty[$$

EXERCICE 8

On donne le tableau de variation d'une fonction u définie sur [-3; 3] dont on ne connaît pas la forme algébrique.

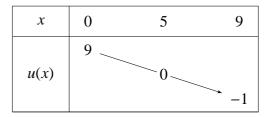
X	-3	0	3
u(x)	7		5

Dresser le tableau de variation des fonctions f et g suivantes sur [-3; 3]

a)
$$f(x) = -2u(x) + 1$$

b)
$$g(x) = \sqrt{u(x)}$$

EXERCICE 9


Vrai-Faux

u est une fonction dont le tableau de variation est donné ci dessous :

f et g sont les fonction définie par :

$$f(x) = \sqrt{u(x)}$$
 et

$$g(x) = [u(x)]^2$$

Dire si les affirmations suivantes sont vraies ou fausses en justifiant la réponse.

- a) f est définie sur [0; 9]
- b) f est décroissante sur [0; 5]
- c) f(x) appartient à l'intervalle $[0; \sqrt{5}]$
- d) g est définie sur [0; 9]
- e) g est décroissante sur [0; 9]