Correction du devoir de mathématiques Du 02 novembre 2015

Exercice 1

Représentations graphiques

(2,5 points)

Pour associer une courbe à une fonction, on utilisera la direction de la parabole et une image judicieusement choisie.

- a) $f_1(x) = -x^2 + 2x 3$ La courbe de f_1 est dirigée vers le bas car son coefficient a = -1 devant x^2 est négatif. De plus $f_1(0) = -3$. Sa courbe est \mathcal{C}_5
- b) $f_2(x) = x^2 + x + 3$ La courbe de f_2 est dirigée vers le haut car son coefficient a = 1 devant x^2 est positif. De plus $f_2(-1) = 1 1 + 3 = 3$. Sa courbe est \mathcal{C}_1
- c) $f_3(x) = 2x^2 5x + 3$ La courbe de f_3 est dirigée vers le haut car son coefficient a = 2 devant x^2 est positif. De plus $f_3(1) = 2 - 5 + 3 = 0$. Sa courbe est \mathcal{C}_3
- d) La courbe de f_4 est dirigée vers le bas car son coefficient a = -2 devant x^2 est négatif. De plus $f_4(0) = 3$. Sa courbe est \mathcal{C}_4
- e) La courbe de f_5 est dirigée vers le haut car son coefficient a=1 devant x^2 est positif. De plus $f_5(0)=\frac{1}{4}$. Sa courbe est \mathcal{C}_2

Exercice 2

Forme canonique

(2 points)

- 1) $f(x) = -2x^2 + 8x 13 = -2(x^2 4x) 13 = -2[(x 2)^2 4] 13 = -2(x 2)^2 + 8 13$ = $-2(x - 2)^2 - 5$
- 2) Le coefficient devant x^2 étant négatif, la fonction f admet un maximum. De plus $\alpha = 2$ et $\beta = -5$. Le maximum est donc -5 obtenu pour x = 2

Exercice 3

Équations et inéquations

(6,5 points)

- 1) $-3x^2 + 2x 3 = x 1 \Leftrightarrow -3x^2 + x 2 = 0$ $\Delta = 1 - 24 = -23 < 0$. L'équation n'admet pas de solution $S = \emptyset$
- 2) $\frac{x+1}{x-3} < x$. On détermine l'ensemble de définition, on annule le second terme et l'on réduit au même dénominateur. On fait ensuite un tableau de signes.

$$\frac{x+1}{x-3} < x \iff \frac{x+1-x^2+3x}{x-3} \iff \frac{-x^2+4x+1}{x-3} < 0$$

$$D_f = \mathbb{R} - \{3\}$$

Valeurs frontières :
$$-x^2 + 4x + 1 = 0 \implies \Delta = 16 + 4 = 20 = (2\sqrt{5})^2$$

$$\Delta > 0$$
, deux racines: $x_1 = \frac{-4 + 2\sqrt{5}}{-2} = 2 - \sqrt{5}$ et $x_2 = \frac{-4 - 2\sqrt{5}}{-2} = 2 + \sqrt{5}$

x	$-\infty$ 2 – $\sqrt{5}$	3	2 +	$\sqrt{5}$ + ∞
$-x^2 + 4x + 1$	- 0 +		+ () –
x - 3		ф	+	+
$\frac{-x^2+4x+1}{x-3}$	+ 0 -		+ () –

$$S =]-2-\sqrt{5}; 3[\cup]2+\sqrt{5}; +\infty[$$

$$3) \ \frac{4x^2 + 4x - 15}{-2x^2 + 3x - 4} \le 0$$

On détermine l'ensemble de définition, les valeurs frontières puis le signe de la quantité.

Valeurs interdites: $-2x^2 + 3x - 4 = 0 \implies \Delta = 9 - 32 = -23 < 0$

Pas de valeur interdite donc $D_f = \mathbb{R}$

Valeurs frontières : $4x^2 + 4x - 15 = 0 \implies \Delta = 16 + 240 = 256 = 16^2$

$$\Delta > 0$$
, deux racines : $x_1 = \frac{-4+16}{8} = \frac{3}{2}$ et $x_2 = \frac{-4-16}{8} = -\frac{5}{2}$

x	-∞		$-\frac{5}{2}$		$\frac{3}{2}$		+∞
$4x^2 + 4x - 15$		+	ø	-	φ	+	
$-2x^2 + 3x - 4$		_		-		-	
$\frac{4x^2 + 4x - 15}{-2x^2 + 3x - 4}$		_	0	+	0	_	

$$S = \left] - \infty; -\frac{5}{2} \right] \cup \left[\frac{3}{2}; +\infty \right]$$

4)
$$x^4 - x^2 - 6 = 0$$

On pose $X = x^2$. On a alors $X \ge 0$

L'équation devient : $X^2 - X - 6 = 0$, on calcule $\Delta = 1 + 24 = 25 = 5^2$

$$\Delta > 0$$
, 2 racines, $X_1 = \frac{1+5}{2} = 3$ et $X_2 = \frac{1-5}{2} = -2 < 0$ (non retenue)

On revient à x: $x^2 = 3 \Leftrightarrow x_1 = \sqrt{3}$ et $x_2 = -\sqrt{3}$

$$S = \left\{ -\sqrt{3} ; \sqrt{3} \right\}$$

Exercice 4

Problème de triangle

(4 points)

- 1) $x \in [0; 2]$
- 2) Pour calculer MI² et MC², on utilise le théorème de Pythagore dans les triangles respectifs IAM et MDC rectangles en A et D.

$$f(x) = MI^{2} + MC^{2} = \left(\frac{1}{2}\right)^{2} + x^{2} + (2 - x)^{2} + 2^{2}$$
$$= \frac{1}{4} + x^{2} + 4 - 4x + x^{2} + 1$$
$$= 2x^{2} - 4x + \frac{21}{4}$$

3) Pour dresser le tableau de variation de la fonction f, on cherche la forme canonique :

$$f(x) = 2(x^2 - 2x) + \frac{21}{4} = 2[(x - 1)^2 - 1] + \frac{21}{4} = 2(x - 1)^2 - 2 + \frac{21}{4} = 2(x - 1)^2 + \frac{13}{4}$$

х	0	1	2
f(x)	<u>21</u> 4	13 4	21/4

4) a) Si le triangle IMC est rectangle en M, d'après le théorème de Pythagore, on a :

$$MI^2 + MC^2 = IC^2 \iff MI^2 + MC^2 = ID^2 + DC^2 = \frac{1}{4} + 4 = \frac{17}{4}$$

On a donc :
$$f(x) = \frac{17}{4}$$

b) Il faut résoudre $f(x) = \frac{17}{4}$ on prend la forme canonique :

$$2(x-1)^2 + \frac{13}{4} = \frac{17}{4} \iff 2(x-1)^2 = 1 \iff (x-1)^2 = \frac{1}{2}$$

d'où $x-1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ ou $x-1 = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$

On trouve alors:
$$x = 1 + \frac{\sqrt{2}}{2}$$
 ou $x = 1 - \frac{\sqrt{2}}{2}$

Exercice 5

Équation paramétrique

(2,5 points)

a) (E) admet une solution unique si, et seulement si, $\Delta_m = 0$

$$\Delta_m = 0 \Leftrightarrow (m+1)^2 - 4(-m^2 + 1) = 0 \Leftrightarrow m^2 + 2m + 1 + 4m^2 - 4 = 0 \Leftrightarrow 5m^2 + 2m - 3 = 0$$

$$m_1 = -1$$
 est racine évidente car $5 - 2 - 3 = 0$ or $P = -\frac{3}{5}$ donc $m_2 = \frac{3}{5}$

- (E) admet une unique solution si, et seulement si, m = -1 ou $m = \frac{5}{3}$
- b) (E) admet 2 solutions réelles distinctes si, et seulement si, $\Delta_m > 0$ donc $5m^2 + 2m - 3 > 0$, on prend à l'extérieur des racines $m \in]-\infty; -1[\cup]\frac{3}{5}; +\infty[$

Exercice 6

Algorithme (2,5 points)

```
Variables: m, p, x_1, x_2
Entrées et initialisation
 Lire m, Lire p
Traitement et sorties
     si m = 0 alors
          \mathbf{si} \ p = 0 \ \mathbf{alors}
             Afficher "tout x est solution"
          sinon
               Afficher "pas de solution"
          fin
     sinon
          \mathbf{si}\ p = 0\ \mathbf{alors}
             Afficher "0 est l'unique solution"
               \mathbf{si} \; \frac{p}{m} > 0 \; \mathbf{alors}
                     Afficher "l'équation a 2 solutions"
                     Afficher x_1
                    Afficher x_2
                sinon
                 | Afficher "Pas de solution"
               fin
          fin
     fin
```