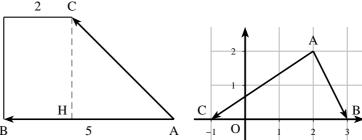

Contrôle de mathématiques


Lundi 23 mai 2016

Exercice 1

Figure (1,5 points)

Dans chacun des cas suivants, calculer la valeur exacte du produit scalaire : $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

EXERCICE 2

Orthogonalité (1,5 points)

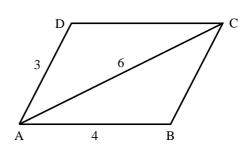
Le plan est muni d'un repère orthonormé et m est un réel.

On donne $\vec{u} \begin{pmatrix} 3 \\ -m+2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 4m \\ -1 \end{pmatrix}$. Déterminer m pour que \vec{u} et \vec{v} soient orthogonaux.

Exercice 3

Angle (3 points)

Soit ABCD un carré de côté 1. Soit M un point de [AB] tel que $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$ et N un point de [BC] tel que $\overrightarrow{BN} = \frac{2}{3}\overrightarrow{BC}$.


- 1) Faire une figure.
- 2) En calculant le produit scalaire $\overrightarrow{DM} \cdot \overrightarrow{DN}$ de 2 façon différentes, déterminer la mesure exacte de l'angle \widehat{MDN} . On pourra introduire le repère $(A, \overrightarrow{AB}, \overrightarrow{AD})$

Exercice 4

Parallélogramme (3 points)

Soit ABCD un parallélogramme tel que : AB = 4; AD = 3 et AC = 6.

- 1) Déterminer la valeur exacte de : $\overrightarrow{AB} \cdot \overrightarrow{AD}$
- 2) En déduire la mesure à 0,1° près de l'angle \widehat{BAD} .
- 3) a) Développer $(\overrightarrow{BA} + \overrightarrow{AD})^2$.
 - b) En déduire la valeur exacte de la longueur BD.

Exercice 5

Droite et cercle (5 points)

On donne le cercle $\mathscr C$ d'équation : $x^2 + y^2 - 6x - 4y - 4 = 0$. Soit la droite d d'équation 4x + y - 31 = 0.

- 1) a) Déterminer le centre Ω et le rayon r du cercle \mathscr{C} .
 - b) Montrer que les points A(7; 3) et B(-1; 1) appartiennent au cercle \mathscr{C} .
 - c) Tracer sur l'annexe, à rendre avec la copie, le cercle \mathscr{C} .
- 2) a) Montrer que le point A appartient à la droite d.
 - b) Tracer la droite d sur l'annexe.
 - c) Montrer que la droite d est tangente au cercle $\mathscr C$ en A.
 - d) La tangente en B au cercle \mathscr{C} est-elle parallèle à d?

Exercice 6

Relation d'Al-Kashi (3 points)

Soit la triangle ABC. On pose BC = a, AC = b et AB = c. On donne : a = 6, b = 8 et c = 10

1) Donner la relation d'Al-Kashi, puis montrer que : $\cos \widehat{BAC} = \frac{b^2 + c^2 - a^2}{2bc}$

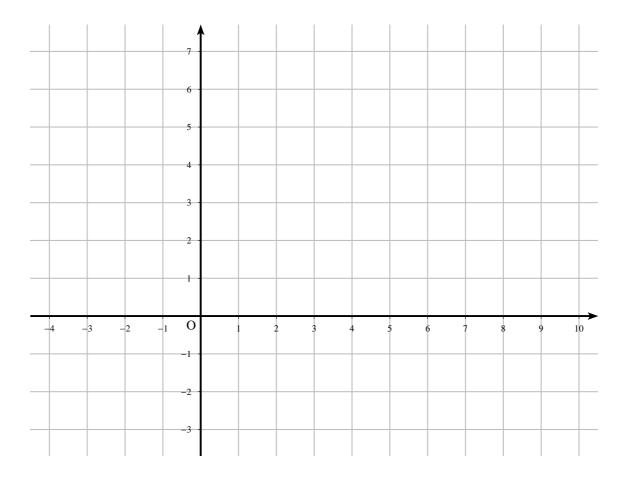
- 2) Donner une valeur de \widehat{BAC} à $0,1^{\circ}$ près.
- 3) Par une permutation circulaire, donner une valeur à 0,1° près de ÂBC.

Exercice 7

Théorème de la médiane

(3 points)

Soit un triangle ABC. Soit I le milieu de [BC].


- 1) Démontrer que : $AB^2 + AC^2 = 2AI^2 + \frac{BC^2}{2}$.
- 2) Application numérique : AB = 5, AC = 7 et BC = 11. Calculer la longueur exacte de la médiane AI.

Nom:

Prénom:

Annexe de l'exercice 5

(À rendre avec la copie)

