# Contrôle de mathématiques

# Mercredi OI février 2017

# Exercice 1

#### Monotonie d'une suite

(2 points)

Soit la suite  $(u_n)$  définie sur  $\mathbb{N}$  par :  $u_n = \frac{2n+1}{n+3}$ 

- 1) Montrer que  $u_{n+1} u_n = \frac{5}{(n+4)(n+3)}$
- 2) Que peut-on dire sur la monotonie de la suite  $(u_n)$ ?

### Exercice 2

## Suite arithmétique et suite géométrique

(5 points)

- 1) La suite  $(u_n)$  est une suite arithmétique de raison r et de premier terme  $u_0$ . On donne  $u_{10} = -12$  et  $u_{20} = -32$ .
  - a) Déterminer la raison r et le premier terme  $u_0$ .
  - b) Calculer  $u_{100}$
- 2) Calculer la somme  $S: S = 9 + 12 + 15 + \cdots + 123 + 126$ .
- 3) La suite  $(v_n)$  est une suite géométrique de raison q et de premier terme  $v_0$ . On donne  $v_5 = 135$  et  $v_8 = 3645$ 
  - a) Déterminer la raison q et le premier terme  $v_0$  en fraction irréductible
  - b) Calculer la somme :  $S_8 = v_0 + v_1 + v_2 + \cdots + v_8$ . Donner le résultat sous la forme d'une fraction irréductible.

#### Exercice 3

#### Limite d'une suite

(5 points)

Soit la suite  $(u_n)$  définie sur  $\mathbb{N}$  par :  $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{1}{4}u_n + 3 \end{cases}$ 

- 1) a) Calculer  $u_1$ ,  $u_2$  et  $u_3$ .
  - b) La suite  $(u_n)$  est-elle géométrique? Pourquoi?
- 2) On pose pour tout entier n,  $v_n = u_n 4$ 
  - a) Montrer que la suite  $(v_n)$  est géométrique dont on donnera la raison q et le premier terme  $v_0$ .
  - b) Déterminer  $v_n$  puis  $u_n$  en fonction de n.
  - c) Déterminer  $\lim u_n$

#### Exercice 4

#### Visualisation d'une suite

(3 points)

Soit la suite 
$$(u_n)$$
 définie sur  $\mathbb{N}$  par : 
$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2 - u_n} \end{cases}$$

Sur l'annexe est tracé la courbe représentative de la fonction f telle que  $u_{n+1} = f(u_n)$ 

- 1) a) Construire, sur le graphique, les 4 premiers termes de la suite sur l'axe des abscisses. On laissera les traits de construction.
  - b) À quoi sert la droite d'équation y = x sur le graphique?
  - c) Conjecturer la monotonie et la convergence de la suite  $(u_n)$
- 2) Recopier puis compléter l'algorithme cidessous pour qu'il détermine à partir de quel rang n, le terme  $u_n$  se trouve à moins de  $10^{-3}$  de la limite de la suite.

```
Variables : N : entiers et U réelEntrées et initialisation\cdots \to N\cdots \to UTraitementtant que |U-1| \dots faire\cdots \to N\cdots \to N\cdots \to NfinSorties : Afficher ...
```

#### Exercice 5

Segments (5 points)

On place sur un cercle n points distincts et l'on s'intéresse au nombre  $p_n$  de segments ayant pour extrémité deux de ces points.







- 1) Déterminer les valeurs de  $p_3$ ,  $p_4$  et  $p_5$ .
- 2) n points sont placés et les  $p_n$  segments étant tracés, on ajoute un nouveau point distinct des précédents. Combien de nouveaux segments peut-on tracer? En déduire une relation de récurrence entre  $p_{n+1}$  et  $p_n$ .
- 3) En écrivant les lignes :

$$p_2 = 1$$
  
 $p_3 = p_2 + \dots$   
 $p_4 = p_3 + \dots$   
 $\dots = \dots$   
 $p_n = p_{n-1} + \dots$ 

et en additionnant termes à termes, déterminer  $p_n$  en fonction de n

4) On voudrait connaître le nombre de points nécessaires pour tracer 1 035 segments. Pour cela, on écrit l'algorithme suivant :

Recopier puis compléter l'algorithme puis donner la valeur que renvoie l'algorithme.

```
Variables : N, P : entiers

Entrées et initialisation
\begin{vmatrix}
1 \to P \\
2 \to N
\end{vmatrix}
Traitement
\begin{vmatrix}
\mathbf{tant que ...... faire} \\
P + N \to P \\
N + 1 \to N
\end{vmatrix}
fin

Sorties : Afficher ...
```

Nom:

Prénom:

# Annexe de l'exercice 4

(À rendre avec la copie)

