Devoir de mathématiques n°15 (DS) (10-05-2012)

I) 1) Le plan est muni d'un repère orthonormé direct.

(6 points)

Soient les points A(-1; 0), B(3; 4) et C(5; -2). Déterminer une équation :

- a) de la médiatrice du segment (AB].
- b) de la hauteur issue de A du triangle ABC.
- c) du cercle de diamètre [AB].
- 2) Soit Γ : $x^2 + y^2 4x + 3y \frac{11}{4} = 0$
 - a) Déterminer la nature de Γ et déterminer ses éléments caractéristiques.
 - b) Déterminer les coordonnées des points d'intersection de Γ et de la droite d d'équation y=x.
- II) Soient deux points du plan A et B tels que AB = 6 (en cm) et I le milieu du segment [AB]. (5 pts)
 - 1) Montrer que, pour tout point $M: MA^2 + MB^2 = 2MI^2 + \frac{AB^2}{2}$.
 - 2) Soit l'ensemble E des points M du plan tels que : $MA^2 + MB^2 = 26$
 - a) Montrer que, pour tout point $M: M \in E \iff MI = 2$.
 - b) En déduire la nature et les éléments caractéristiques de l'ensemble E.
- III) (les exercices sont indépendants)

(13,5 points)

- 1) Calculer (en donnant les valeurs exactes): $\cos \frac{7\pi}{12} = \cos \left(\frac{\pi}{3} + \frac{\pi}{4}\right)$; $\sin \frac{7\pi}{12}$; puis $\tan \frac{7\pi}{12}$.
- 2) Soient $a \in \left[\frac{\pi}{2}; \pi\right]$ et $\cos a = -\frac{\sqrt{2 + \sqrt{3}}}{2}$; déterminer : $\cos(2a)$
- 3) Soit $x \in \left[0; \frac{\pi}{4}\right[$; On pose : $f(x) = \frac{\sin(6x)}{\sin(2x)} \frac{\cos(6x)}{\cos(2x)}$.
 - a) Montrer que : $\sin(2x) \neq 0$ et $\cos(2x) \neq 0$
 - b) Simplifier: $\sin(6x)\cos(2x) \sin(2x)\cos(6x)$
 - c) En déduire que : f(x) = 2.
- 4) a) Montrer que, pour tout réel x: $\cos 3x = 4\cos^3 x 3\cos x$.
 - b) En déduire les solutions de l'équation trigonométrique : $4\cos^3 x 3\cos x = 0$.
- 5) Résoudre les équations trigonométriques :

$$(E_l)$$
: $\sin x = \frac{\sqrt{3}}{2}$ (E_2) : $\cos x = -\frac{\sqrt{2}}{2}$ (E_3) : $\cos 2x = \sin\left(x + \frac{\pi}{3}\right)$

IV) ABCD est un carré; soit de plus le point I tel que : $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AD}$. (5,5 points)

- 1) On considère le repère (A; \overrightarrow{AB} ; \overrightarrow{AD})
 - a) Donner les coordonnées des points A, B, C, D et I.
 - b) Calculer: $\overrightarrow{IB} \cdot \overrightarrow{IC}$, et les longueurs IB et IC.
- 2) En déduire cos BIC.
- 3) Sans utiliser de coordonnées mais en décomposant les vecteurs \overrightarrow{IB} et \overrightarrow{IC} , retrouver $\overrightarrow{IB} \cdot \overrightarrow{IC}$

