Les pavages du plan

Table des matières

1	Pavage du plan		
	1.1	Pavage régulier	2
	1.2	Pavage régulier avec des polygones réguliers	2
	1.3	Avec plusieurs polygones réguliers	3

1 Pavage du plan

Définition 1 : Pavage.

Partition du plan en parties isométriques deux à deux.

Ces parties identiques s'appellent « pavés » ou « tuiles » dans le cas d'un plan.

1.1 Pavage régulier.

Définition 2 : Un pavage est régulier si et seulement si

- le sommet d'un polygone n'est en contact qu'avec le sommet d'un autre polygone.
- La configuration autour de chaque sommet ou noeud du pavage est la même.

Remarque: On pourra analyser un pavage régulier soit:

- en isolant un motif tel que, lorsqu'on le transforme par translation, il permette de reconstituer le pavage; ce motif s'appelle motif **translatable**.
- en isolant un motif d'aire minimale qui permet de reconstituer le motif translatable quand on lui applique différentes isométries.

1.2 Pavage régulier avec des polygones réguliers.

Soit p le nombre de polygones réguliers de n côtés associés pour faire un nœud. Soit α l'angle que forme les côtés de ce polygone.

On doit avoir:
$$p\alpha = 360^{\circ}$$
 et $\alpha = \frac{n-2}{n} \times 180$

Comme *n* est supérieur ou égale à 3 (triangle équilatéral), on a :

$$\alpha \geqslant 60^{\circ} \Leftrightarrow p \leqslant \frac{360}{60} \Leftrightarrow p \leqslant 6$$

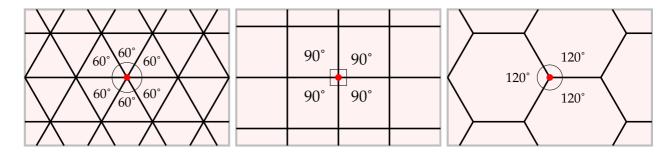
De plus comme l'angle est inférieur à 180°,

$$\alpha < 180^{\circ} \Leftrightarrow p > \frac{360}{180} \Leftrightarrow p > 2$$

Il reste ainsi 4 possibilités que nous allons étudier.

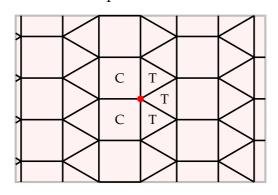
Valeur de <i>p</i>	Mesure de α en degré	Nœud du pavage formé de :
p=3	120	3 hexagones réguliers
p=4	90	4 carrés
p=5	72	<i>n</i> non entier
p=6	60	6 triangles équilatéraux

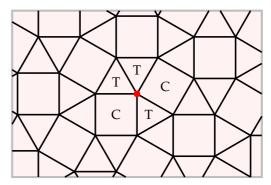
Il existe que trois pavage à l'aide de polygones réguliers.



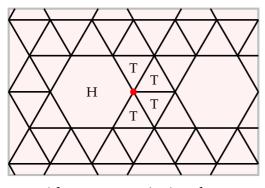
1.3 Avec plusieurs polygones réguliers

• Autour de chaque nœud : 2 carrés et 3 triangles

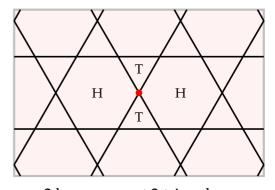




• Autour de chaque nœud :



1 hexagone et 4 triangles

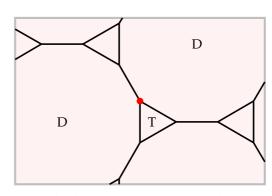


2 hexagones et 2 triangles

• Autour de chaque nœud :

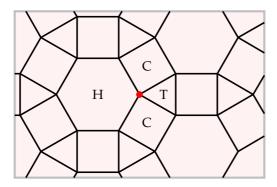


2 octogones et 1 carré

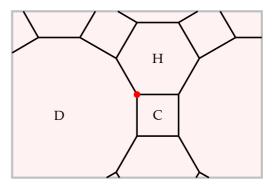


2 dodecagones et 1 triangle

• Autour de chaque nœud :







1 dodécagone, 1 hexagone et 1 carré