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Continuity and differentiability
of a function

Proofreading of English by Laurence Weinstock
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1. CONTINUITY OF A FUNCTION

1 Continuity of a function

1.1 Finite limit at a finite point

Definition 1 : A function f has a

finite limit ℓ at a if any open interval
containing ℓ contains all values of f (x)
by choosing x close enough to a - i.e. all
values of x in an interval of width 2η

centered at a, ]a − η; a + η[. The limit is
denoted :

lim
x→a

f (x) = ℓ

ℓ

a a+ηa-η

C f

O

bC

Note : Sometimes, the function f does not have a limit at a, but does have a
right- and left-hand limit such as the integer part function, denoted E in French
and int in English (see below). For instance : lim

x→2−
E(x) = 1 and lim

x→2+
E(x) = 2

1.2 Continuity at a point

Definition 2 : Let f be a function defined on an interval I. Let a be an element

of I. The function f is said to be continuous at a if, and only if :

lim
x→a

f (x) = f (a)

The function f is said to be continuous on the interval I if, and only if, f is
continuous at each point in I.

Note : Less formally, a function is continuous when its graph is a single unbro-
ken curve i.e. you could draw it without lifting your pen from the paper.

1

2

3

1 2 3 4 5−1

b

] C f

O

Function f discontinuous at 2

lim
x→2+

f (x) = 3 6= f (2)

1

2

3

1 2 3 4 5−1

C f

O

Function f continuous on [−1, 5 ; 5, 5]

On the left, the function f has a "jump" discontinuity. It is the case for example
of the integer part function or more concretely of the function that represents the
postal rates (abrupt rate change between letters below 20 g and for them between
20 g and 50 g in France).
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1. CONTINUITY OF A FUNCTION

There are other types of discontinuities. For example, the discontinuity at 0 of the

function f defined by f (x) = sin
1

x
if x 6= 0 and f (0) = 0.

∀x ∈ R, ∃ n ∈ Z, n 6 x < n + 1

The integer part function E is defined by :
E(x) = n (int(x) = n in English)

E(2, 4) = 2 ; E(5) = 5 ; E(−1, 3) = −2

For the calculator Ti 82, ≤ 5 : int.

For any integer, there is a "jump" on the graph.

So the integer part function is not continuous if

x is an integer.

1

2

3

−1

−2

1 2 3 4−1−2

b [

b [

b [

b [

b [

b [

O

Let f be the function defined by :






f (x) = sin
1

x
if x 6= 0

f (0) = 0

The function f is not continuous at 0 although

no "jump" can be observed here. The function

varies increasingly around 0 so that near 0, the

function oscillates more and more. We cannot

say that as x approaches 0 the function ap-

proaches 0.

b

1

−1

1−1 O

1.3 Continuity of common functions

Property 1 : The following results can be proven

• All polynomials are continuous on R.

• The simple rational function x 7→ 1

x
is continuous on ]− ∞; 0[ and son ]0;+∞[

• The absolute value function x 7→ |x| is continuous on R.

• The square root function x 7→ √
x is continuous on [0;+∞[

• The sine and cosine functions x 7→ sin x and x 7→ cos x are continuous on R

• Generally speaking, all functions built by algebraic operation (addition, multi-
plication) or by composition from the above functions are continuous on their
domain, in particular the rational functions.

1.4 Fixed point iteration theorem

Theorem 1 : Fixed point iteration theorem

Let (un) be a sequence defined by u0 and a recurrence relation un+1 = f (un)
converging to ℓ.
If the associated function f is continuous at ℓ, then the limit of the sequence, ℓ, is
a solution of the equation f (x) = x. It is said that ℓ is a fixed point of f
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1. CONTINUITY OF A FUNCTION

Proof :

We know that the sequence (un) converges to ℓ so : lim
n→+∞

un = ℓ

Moreover, the function f is continuous at ℓ so : lim
x→ℓ

f (x) = f (ℓ)

By composition, we deduce that : lim
n→+∞

f (un) = f (ℓ) ⇔ lim
n→+∞

un+1 = f (ℓ)

but lim
n→+∞

un = lim
n→+∞

un+1 so ℓ = f (ℓ)

Example : Let (un) be a sequence defined by
{

u0 = 0

un+1 =
√

3un + 4

In chapter 2, we proved by induction that (un) is positive, increasing and boun-
ded above by 4, according to the theorem of monotonic sequences, (un) is convergent
to ℓ. The function x 7→

√
3x + 4 is continuous on [0; 4], so ℓ is solution to the

equation f (x) = x.

√
3x + 4 = x by squaring

3x + 4 = x2

x2 − 3x − 4 = 0

This equation has two solutions −1 and 4. As the sequence (un) is positive
then, according to the fixed point theorem, the sequence (un) converges to 4.

1.5 Continuity and differentiability

Theorem 2 : Differentiability implies continuity

• If f is differentiable at a point a then the function f is continuous at a.
• If f is differentiable on an interval I then the function f is continuous on I.

B The converse of this theorem is false

Note : The converse of this theorem is false. A graph can have no jump discon-
tinuity but not have a tangent line at a finite point as in the following example :

This function therefore is continuous at
a (no jump), but is not differentiable at
a. The graph has no tangent line at a.

The graph is said have a corner or cusp
at the point A

A

O a

b

b

The absolute value function x 7→ |x| is continuous but not differentiable at 0.
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1. CONTINUITY OF A FUNCTION

1.6 Continuity and equation

Theorem 3 : Intermediate value theorem (IVT)

Let f be a continuous function on an interval I = [a, b].
For any real number k between f (a) and f (b), there must be at least one value
c ∈ I such that f (c) = k.

Note : The proof of this theorem is not on the syllabus.

This theorem follows from the fact that
the image of an interval of a conti-
nuous function over an interval of R is
itself an interval of R

Consider the following graph : k is bet-
ween f (a) and f (b). Note the wording
of the theorem

"at least one value". This means we could
have more. Here for example, we have
3 points where f (x) = k. The equa-
tion f (x) = k therefore has 3 solutions :
c1, c2 and c3.

a b

f (a)

f (b)

k

c1 c2 c3O

Theorem 4 : IVT with continuous one-to-one functions

Let f be a continuous and strictly monotonic function on I = [a, b].
For any k between f (a) and f (b), the equation f (x) = k has a unique solution in
the interval I = [a, b]

Proof : The existence is proven by the precedent theorem, and the uniqueness
by the monotonicity of the function.

Note :
• This theorem is generalized with an open interval I =]a, b[. k must be between

lim
x→a

f (x) and lim
x→b

f (x)

• When k = 0, we then have to show f (a)× f (b) < 0.
• Sometimes, in French, the theorem is called the "bijective theorem" because the

function is bijective from I to f (I).

Example : Let f be a function defined on R by : f (x) = x3 + x − 1. Show that the
equation f (x) = 0 has only one solution on R. Give an approximation to within
one unit. Then find , with an algorithm, an approximate value within 10−6 of the
solution.
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2. DIFFERENTIABILITY

1

2

3

−1

−2

0.5 1.0 1.5O

α

The function f is a continuous function on R be-
cause f is a polynomial.

The function f is the sum of increasing functions
x 7→ x3 and x 7→ x − 1, so f is strictly increasing
on R.

We have f (0)=−1 and f (1)=1 ⇒ f (0)× f (1) < 0

hence by the intermediate value theorem, the func-
tion f have an only one solution α ∈ [0, 1] such that
f (α) = 0.

Algorithm : An algorithm, using the dicho-

tomy principle (the interval is divided in two
and the operation is repeated) one can find a
value of α rounded to within 10−6.
Consider :
• A and B endpoints of the interval.
• P the accuracy (natural number).
• N the number of iterations.

Input : A = 0, B = 1, P = 6 and
f (x) = x3 + x − 1

We find : A = 0,682 327, B = 0,682 328 and
N = 20.

20 iterations are required to have an accuracy of

10−6

Variables: A, B, C real numbers
P, N integers f function

Inputs and initialization
Read A, B, P
0 → N

Processing

while B − A > 10−P do

A + B

2
→ C

if f (A)× f (C) > 0 (*) then

C → A
else

C → B
end
N + 1 → N

end

Output : Print : A, B, N

B This algorithm is made for k = 0, but we can change the algorithm for any real numbers k :

• ask to read K and then make the following change in the algorithm : ( f (A)−K)×( f (C)−K) > 0

• or input the function g instead of f such that : g(x) = f (x) − k

2 Differentiability

2.1 Definition

Definition 3 : Let f be a function defined on an open interval I and a a point

of I. The function f is said to be differentiable at a if and only if the rate of change
of the function f at a has a finite limit ℓ at a, i.e. :

lim
h→0

f (a + h)− f (a)

h
= ℓ

ℓ is called the derived number of f at a and is denoted f ′(a)

When the function f is differentiable on an interval I, the derivative function,
called f ′, which to x of I relates the derived number f ′(x).
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2. DIFFERENTIABILITY

Note :

• If the function f is differentiable at a then the function f is continuous at a

• Physicists express a variation with the symbol ∆ ; they therefore write :
∆x = x − a and ∆y = f (x)− f (a).
For an infinitesimally small variation, they write dx and dy. The notation (Leib-
niz’s notation) for the derivative is :

f ′ =
dy

dx
and f ′(a) =

dy

dx
(a)

Example : Let f be a piecewise function defined by :







f (x) = x2 − 2x − 2 if x 6 1

f (x) =
x − 4

x
if x > 1

Let us study the continuity and differentiability of this function at 1.

• Continuity at 1. Left-hand continuity at 1 is not a problem, because a polyno-
mial is continuous on ]− ∞ ; 1]. For the right-hand continuity :

lim
x→1+

x − 4

x
= −3 and f (1) = 12 − 2 × 1 − 2 = −3

so : lim
x→1+

x − 4

x
= f (1) the function f is continuous at 1

• Differentiability at 1. Left-hand differentiability at 1 is not a problem because
a polynomial is differentiable on ]− ∞; 1].

if x 6 1, we have f ′(x) = 2x − 2 so f ′−(1) = 0

As for right-hand differentiability, we have to revert to the definition. We can
then carry out the following calculation :

f (1 + h)− f (1)

h
=

1 + h − 4

1 + h
+ 3

h
=

4 h

h(1 + h)
=

4

1 + h

So : lim
h→0−

4

1 + h
= 4 then f ′+(1) = 4

As f ′−(1) 6= f ′+(1) the function f is
not differentiable at 1.

Graphically the graph C f is a single
unbroken curve and has a cusp at the
point A.

−1

−2

−3

1 2 3 4−1−2

C f

A

O
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2. DIFFERENTIABILITY

2.2 Interpretations

2.2.1 Graphical interpretation

Theorem 5 :

When f is differentiable at a, the graph
C f of the function f has, at the point
A(a, f (a)) a tangent line with a linear
coefficient f ′(a) whose the equation is :

(T) : y = f ′(a)(x − a) + f (a)

A

M

x

y

a

f (a)

O

C f

(T)

b

Note : The derived number represents the slope of the tangent line at a point.
If the function f is left- and right-hand differentiable but not differentiable at a,
the graph C f has two one-sided tangent lines.

2.2.2 Numerical interpretation

Theorem 6 : When a function f is differentiable at a, a good linear approxima-

tion, when a + h approaches a is :

f (a + h) ≈ f (a) + h f ′(a)

Example : Determine a linear approximation of
√

4, 03.

Consider f (x) =
√

x, a = 4 and h = 0, 03. We calculate the derivative at 4.

f ′(x) =
1

2
√

x
so f ′(4) =

1

4

then f (4, 03) ≈ f (4) + 0, 03 × 1

4
≈ 2, 0075

Hence :
√

4, 03 ≈ 2, 0075 which is comparable to the calculator value 2,007 486.
The accuracy is 10−4.

2.2.3 Kinematic interpretation

If x(t) is an equation of motion, then x′(t) represents the instantaneous velocity
at the time t. Same, if v(t) is the instantaneous velocity at the time t, then v′(t)
represents the acceleration at the time t.

With physicist notation, the instantaneous velocity v and the acceleration a is
denoted :

v =
dx

dt
and a =

dv

dt
=

d

dt

(

dx

dt

)

=
d2x

dt2
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2. DIFFERENTIABILITY

2.3 Monotonicity and sign of the derivative

Theorem 7 : Let f be a function differentiable on an interval I.

• If the derivative f ′ is zero, then the function f is constant.

• If the derivative f ′ is strictly positive (except in a few points of I where is zero),
then the function f is strictly increasing on I.

• If the derivative is strictly negative (except in a few points of I where is zero),
then the function f is strictly decreasing on I.

Note : The monotonicity of a differentiable function is given by the sign of the
derivative.

Example : Study the monotonicity of the function f defined on R by :

f (x) = x3 − 6x2 + 1

f is differentiable on R and :

f ′(x) = 3x2 − 12x = 3x(x − 4)

Then

• f ′(x) = 0 ⇔ x1 = 0 or x2 = 4

• f ′ is positive outside the roots and negative inside.

We can sum up the monotonicity of the function with the following table :

x

f ′(x)

f (x)

−∞ 0 4 +∞

+ 0 − 0 +

−∞−∞

11

−31−31

+∞+∞

2.4 Derivative and relative extrema

Theorem 8 : Let f be a differentiable function on an open interval I and a a

point of I.
• If f has a relative extremum at a then f ′(a) = 0.
• If f ′(a) = 0 and if f ′ changes sign at a then the function f has a relative extre-

mum at a.

Note : Relative extrema are sought among the zeros of the derivative, but if

f ′(a) = 0, a is not necessarily a relative extremum (counterexample f (x) = x3 at
a = 0).

Consequently Optimization problems include determining a differentiable func-
tion and determining relative extrema.
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2. DIFFERENTIABILITY

Example : Problem of the publisher.
A publisher wishes to produce a book
with the following constraints : on each
page the printed text must be contained
within a rectangle of 300 cm2, the mar-
gins should measure 1.5 cm on the ho-
rizontal edges and 2 cm on the vertical
edges .
What should be the size of a page that
paper consumption is minimal ?
Consider x and y the horizontal and
vertical dimensions and S the total area
of the sheet. We seek to express y and S
in terms of x. As paper consumption is
given by the surface, the minimum of S
will be determined according to the va-
lues of x

300 cm22 2

1,5

1,5

x

y

The printed area : (x − 4)(y − 3) = 300 ⇔ y =
300

x − 4
+ 3

The total area : S(x) = xy =
300x

x − 4
+ 3x = 3

(

100x

x − 4
+ x

)

We derive S : S′(x) = 3

(

100(x − 4)− 100x

(x − 4)2
+ 1

)

= 3

(−400 + x2 − 8x + 16

(x − 4)2

)

S′(x) =
3(x2 − 8x + 384)

(x − 4)2

Zero of S′ : S′(x) = 0 ⇔ x2 − 8x + 384 = 0

hence ∆ = 82 + 4 × 384 = 1600 = 402

The positive root is : x =
8 + 40

2
= 24

x

S′(x)

S(x)

4 24 +∞

− 0 +

The total area is at a minimum when x = 24, we then deduce y =
300

24 − 4
+ 3 = 18

The dimensions of the sheet that makes minimal paper consumption is 24 × 18 cm
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2. DIFFERENTIABILITY

2.5 Derivatives of common functions and derivative rules

2.5.1 Derivative of common functions

Here is the table of the derivatives of common functions and their domain

Function Dom( f ) Derivative Dom( f ′)

f (x) = k R f ′(x) = 0 R

f (x) = x R f ′(x) = 1 R

f (x) = xn n ∈ N
∗

R f ′(x) = nxn−1 R

f (x) =
1

x
R

∗ f ′(x) = − 1

x2

]− ∞; 0[ or

]0;+∞[

f (x) =
1

xn
n ∈ N

∗ R
∗ f ′(x) = − n

xn+1

]− ∞; 0[ or

]0;+∞[

f (x) =
√

x [0;+∞[ f ′(x) =
1

2
√

x
]0;+∞[

f (x) = sin x R f ′(x) = cos x R

f (x) = cos x R f ′(x) = − sin x R

2.5.2 Derivative rules

Sum rule (u + v)′ = u′ + v′

Multiplication by constant (ku)′ = ku′

Product rule (uv)′ = u′v + uv′

Reciprocal rule

(

1

u

)′
= − u′

u2

Quotient rule
(u

v

)′
=

u′v − uv′

v2

Power rule (un)′ = nu′un−1

Square root rule
(√

u
)′
=

u′

2
√

u

Chain rule [ f (ax + b)]′ = a × f ′(ax + b)

Note : The last three are new derivation rules in the 12th grade
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2. DIFFERENTIABILITY

2.5.3 Examples

Determine the derivatives of the following functions :

a) f (x) = (3x − 5)4 b) g(x) =
√

x2 + x + 1 c) h(x) = sin(2x + 1)

These three function are differentiable on R because they are the sum, product
and composite of differentiable functions. We then have :

a) f ′(x) = 4 × 3(3x − 5)3 = 12(3x − 5)3

b) g′(x) =
2x + 1

2
√

x2 + x + 1

c) h′(x) = 2 cos(2x + 1)
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