Dérivabilité

$$\sin: \mathbb{R} \longrightarrow [-1; 1]$$
 $\cos: \mathbb{R} \longrightarrow [-1; 1]$ $x \longmapsto \sin(x)$ $x \longmapsto \cos(x)$

sin et cos sont dérivables donc continues sur R.

$$\bullet \sin' x = +\cos x$$

$$\cos' x = -\sin x$$

Dérivées de la composée

Soit *u* une fonction dérivable sur I

$$\sin \circ u : x \xrightarrow{u} u(x) \xrightarrow{\sin} \sin[u(x)]$$

$$\cos \circ u : x \xrightarrow{u} u(x) \xrightarrow{\cos} \cos[u(x)]$$

 $\sin \circ u$ et $\cos \circ u$ sont dérivables sur I et

•
$$\forall x \in I$$
, $(\sin \circ u)'(x) = +u'(x)\cos[u(x)]$

•
$$\forall x \in I$$
, $(\cos \circ u)'(x) = -u'(x)\sin[u(x)]$

Exemple:
$$f(x) = \sin\left(2x + \frac{\pi}{3}\right) \implies f'(x) = 2\cos\left(2x + \frac{\pi}{3}\right)$$

Valeurs remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1

Formules élémentaires

- \sin et \cos sont bornées $\begin{cases} -1 \leqslant \sin x \leqslant 1 \\ -1 \leqslant \cos x \leqslant 1 \end{cases}$, $\forall x \in \mathbb{R}$
- $\forall x \in \mathbb{R}$, $\sin^2 x + \cos^2 x = 1$
- De sinus à cosinus :

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$
 et $\cos\left(\frac{\pi}{2} - x\right) = \sin x$

Les fonctions sinus et cosinus

Intervalle d'étude

sin et cos sont 2π -périodique et respectivement impaire et paire, on peut restreindre leur intervalle d'étude à l'intervalle $[0; \pi]$.

On complète ensuite sur $[-\pi; 0]$ par symétrie.

x	0	$\frac{\pi}{2}$	π	x	($\frac{\pi}{2}$
sin' x	+	- Ø -	_	cos	' x	_
sin x	0	, 1	0	cos	x 1	0 -

Périodicité et parité

- 1) sin et cos sont 2π -périodique :
 - $\forall x \in \mathbb{R}, \ \sin(x+2\pi) = \sin x$
 - $\forall x \in \mathbb{R}, \cos(x+2\pi) = \cos x$
- 2) La fonction sin est impaire : $\forall x \in \mathbb{R}, \ \sin(-x) = -\sin x$ \mathscr{C}_{\sin} admet l'origine O pour centre de symétrie.
 - La fonction \cos est paire : $\forall x \in \mathbb{R}, \cos(-x) = \cos x$

 \mathcal{C}_{\cos} admet l'axe des ordonnées pour axe de symétrie.

Limites utiles - ROC

Limites qui reviennent aux nombres dérivés en 0 :

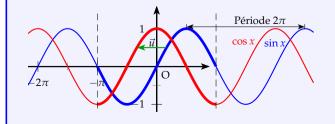
•
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \sin'(0) = \cos(0) = 1$$

•
$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{\cos x - \cos 0}{x - 0} = \cos'(0) = -\sin(0) = 0$$

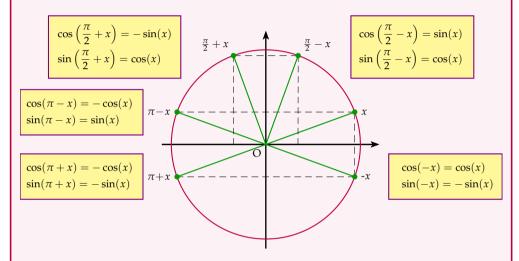
Application:
$$\lim_{x\to 0} \frac{\sin(2x)}{x} = \lim_{x\to 0} 2 \times \frac{\sin(2x)}{2x} = 2$$

Courbes représentatives

- Les courbes de sin et cos sont des sinusoïdes.
- On déduit la sinusoïde de cos par une translation de vecteur $\vec{u} = -\frac{\pi}{2}\vec{\imath}$ de la sinusoïde de sin.



Les angles associés :



Formules d'addition:

- Avec sinus on panache: sin(a+b) = sin a cos b + cos a sin bsin(a-b) = sin a cos b - cos a sin b
- Formules de duplication :
 - $\sin(2a) = 2\sin a \cos a$

- Avec cosinus on ne panache pas : cos(a+b) = cos a cos b - sin a sin bcos(a-b) = cos a cos b + sin a sin b
- $cos(2a) = cos^2 a sin^2 a$ = $2 cos^2 a - 1 = 1 - 2 sin^2 a$

La fonction tangente

(La grande oubliée)

On pose $\tan : x \mapsto \tan(x) = \frac{\sin x}{\cos x}$

•
$$D_f = \{x \in \mathbb{R}, \cos x \neq 0\} = \mathbb{R} - \left\{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$$

• La fonction tan est dérivable sur D_f :

$$\tan' x = \left(\frac{\sin}{\cos}\right)'(x) = \frac{\cos^2 + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

La fonction tangente est strictement croissante sur D_f

• La fonction tan est π -périodique car :

$$\forall x \in D_f$$
, $\tan(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin x}{-\cos x} = \frac{\sin x}{\cos x} = \tan x$

- La fonction tan est impaire : $\tan(-x) = \frac{\sin(-x)}{\cos(x)} = -\frac{\sin x}{\cos x} = -\tan x$ \mathscr{C}_{tan} est symétrique par rapport à l'origine O.
- On peut donc restreindre l'étude à l'intervalle : $\left[0; \frac{\pi}{2}\right[\right]$
- Tableau de variation

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
tan' x		+	
tan x	0 -	1	+∞

$$\lim_{x \to \frac{\pi}{2}^{-}} \sin x = 1$$

$$\lim_{x \to \frac{\pi}{2}^{-}} \cos x = 0^{+}$$

$$\lim_{x \to \frac{\pi}{2}^{-}} \tan x = +\infty$$

$$x = \frac{\pi}{2}$$
 est asymptote verticale à \mathscr{C}_{tan}

• On obtient la courbe \mathscr{C}_{tan} suivante :

