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Complex numbers

Proofreading of English by Laurence Weinstock
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1 Introduction

1.1 A historical problem

At the end of the 16th century, there was a great deal of interest in solving cubic
equations. It was quickly shown that by changing variables any cubic equation
can be written in the form

x3 + px + q = 0

This equation has at least one real root, which can be expressed in the form :

x0 =
3

√

√

√

√−q

2
−

√

q2

4
+

p3

27
+

3

√

√

√

√−q

2
+

√

q2

4
+

p3

27

An Italian mathematician of the time, Bombelli, was particularly interested in the
following equation :

x3 − 15x − 4 = 0

A solution to which can be found as follows : p = −15 and q = −4

x0 =
3
√

2 −
√

4 − 125 +
3
√

2 +
√

4 − 125

=
3
√

2 −
√
−121 +

3
√

2 +
√
−121

=
3
√

2 − 11
√
−1 +

3
√

2 + 11
√
−1

However, the square root
√
−1 was problematic.

But Bombelli noticed that by using the expression (
√
−1)2 = −1, he could carry

out the following expansion 1

(2 −
√
−1)3 = 23 − 3(2)2

√
−1 + 3(2)(

√
−1)2 − (

√
−1)3

= 8 − 12
√
−1 + 6(−1)− (−1)

√
−1

= 2 − 11
√
−1

(2 +
√
−1)3 = 23 + 3(2)2

√
−1 + 3(2)(

√
−1)2 + (

√
−1)3

= 8 + 12
√
−1 + 6(−1) + (−1)

√
−1

= 2 + 11
√
−1 then

x0 = 2 −
√
−1 + 2 +

√
−1 = 4

And indeed , 4 is a solution to the equation.

43 − 15 × 4 − 4 = 64 − 60 − 4 = 0

Conclusion :
√
−1 does not exist, but allows you to find the solution to an equa-

tion via an intermediate calculation. Complex numbers were born ! !

• In the 17th century these numbers became intermediaries for common calcula-
tions but were not considered as numbers in their own right.

1. Remember that : (a + b)3 = a3 + 3a2b + 3ab2 + b3 and (a − b)3 = a3 − 3a2b + 3ab2 − b3
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2. THE CONSTRUCTION OF COMPLEX NUMBERS

• In the 18th century it was shown that these numbers can be put into the form
a + b

√
−1.

Euler then proposed to denote them thus
√
−1 = i. i being called "imagi-

nary".

• In the 19th century Gauss showed that such numbers can be represented gra-
phically. They then finally received the status of numbers.

1.2 Creating a new set of numbers

The discovery of a new set of numbers is quite common in mathematics. Let us
recall the solutions to the following equations.

• Resolution in N of the equation x + 7 = 6.

This equation has no solution, but by creating the negative integers, we find
that x = −1

• Resolution in Z of the equation 3x = 1.

This equation has no solution, but by creating rational numbers, we find that

x =
1

3
.

• Resolution in Q of the equation x2 = 2.

This equation has no solution, but by creating real numbers, we find that x =√
2 or x = −

√
2.

• Resolution in R of the equation x2 + 1 = 0.

This equation has no solution. So by creating a set of numbers called C (for
complex) whose main characteristic by comparison with the real numbers is
the addition of the number i such that i2 = −1, the following solutions can be
found : x = i and x = −i

The natural approach is therefore to seek a greater set of numbers that contains
the former, and which possesses the same properties and which can be represen-
ted graphically.

2 The construction of complex numbers

2.1 Definition

Definition 1 : The set of complex numbers C, is the set of numbers z of the

form :
z = a + ib with(a, b) ∈ R2 and i2 = −1

The real number a is called the real part of z denoted : Re(z)
The real number b is called the imaginary part of z denoted : Im(z).
This form z = a + ib is called the Cartesian form.

Note :
1) All real numbers are included in C (let b = 0).

2) If a = 0, z is purely imaginary
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2.2 Representation of complex numbers

Theorem 1 : A point M(a ; b) can be related to any complex number z = a + ib,

in an orthonormal plane(O,
−→
u ,

−→
v )

z is called the affix of point M, and is written M(z).

Note : This function is bijective. Conversely, a complex number z = x + iy can
also be related to any point M(x ; y) of a plane with an orthonormal basis.

Conclusion : The complex number z = a + ib can be represented graphically.

The modulus of z is the distance OM,
i.e. the quantity, denoted |z| such that :

|z| =
√

a2 + b2

If z ∈ R, then z = a and |z| =
√

a2 = |a|
That is to say, the modulus is the abso-
lute value of the real number (it has the
same nature, so therefore the same no-
tation).

O

M(z)

a

b

|z|

real axis

im
ag

in
ar

y
ax

is

~u

~v θ

And for z 6= 0, the argument of z, denoted arg(z), is the angle θ, (~u;
−−→
OM ) such

that :














cos θ =
a

|z|

sin θ =
b

|z|
with θ = arg(z) [2π]

Examples :
1) Determine the modulus and an argument of the following complex numbers :

z1 = 1 + i , z2 = 1 −
√

3i , z3 = −4 + 3i

|z1| =
√

1 + 1 =
√

2














cos θ1 =
1√
2

sin θ1 =
1√
2

θ1 =
π

4

|z2| =
√

1 + 3 = 2














cos θ2 =
1

2

sin θ2 = −
√

3

2

θ2 = −π

3

|z3| =
√

16 + 9 = 5










cos θ3 = −4

5

sin θ3 =
3

5

θ3 = arccos−4

5
≃ 143°

2) Determine the set of points M whose affix z satisfies each of the following
equalities :

a) |z| = 3 b) Re(z) = −2 c) Im(z) = 1
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2. THE CONSTRUCTION OF COMPLEX NUMBERS

a) |z| = 3 : circle C centered at O and
of radius 3

b) Re(z) = −2 : A line d1 parallel to the
y-axis, with an x-coordinate of −2

c) Im(z) = 1 : A line d2 parallel to the
x-axis, with a y-coordinate of 1

d1

d2

C

O

1

−2 3

2.3 Operations with complex numbers

Two operations can be defined in the set of complex numbers :

• Addition (+) :

if z = a + ib and z′ = a′ + ib′ then z + z′ = (a + a′) + i(b + b′)

• Multiplication (×) :

if z = a + ib and z′ = a′ + ib′ then z × z′ = (aa′ − bb′) + i(ab′ + a′b)

The set of complex numbers C under the laws of addition and multiplication
is a commutative field. It has all the properties of the two laws in the set of real
numbers R, i.e. : commutativity and associativity for addition and multiplication,
the distribution of multiplication over addition, . . .

A complex number is equal to zero, if and only if its real and imaginary parts are
equal to zero :

a + ib = 0 ⇔ a = 0 and b = 0

Examples : Consider the following :

z1 = 4 + 7i − (2 + 4i) = 4 + 7i − 2 − 4i = 2 + 3i

z2 = (2 + i)(3 − 2i) = 6 − 4i + 3i + 2 = 8 − i

z3 = (4 − 3i)2 = 16 − 24i − 9 = 7 − 24i

Note : Comparison of two complex numbers : it is possible to define an order
in C which is a continuation of the order in R. We can simply compare the real
parts and if they are equal we then compare the imaginary parts. Denoting "�"
such an order, we would have :

a + ib � c + id ⇔ a < c or a = c and b 6 d

What follows is : 2 + 5i � 3 − 7i and −1 − i � −1 + 2i

However, this order is not a comprehensive order because it is not compatible
with multiplication :

according to this order : 0 � i but by multiplying by i 0 6� −1

So the idea of inequalities in C was finally abandoned !
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2.4 The complex conjugate

2.4.1 Definition

Definition 2 : Consider a complex number z with the Cartesian form : z =

a + ib. The conjugate of z, is the number, denoted z, such that :

z = a − ib

Property : The product of a complex number and its conjugate is :

zz = |z|2 = a2 + b2 indeed : (a + ib)(a − ib) = a2 − iab + iab + b2

This way we can make a denominator a real number.

Geometric interpretation

The point M’(z) is the symmetrical
point M(z) relative to the x-axis.

M(z)b
|z|

−b M′(z)

|z|
aO ~u

~v

2.4.2 Applications

1) Find the Cartesian form of the following complex number : z =
2 − i

3 + 2i

Multiplying the top and bottom of the fraction by the complex conjugate of
the denominator :

z =
(2 − i)(3 − 2i)

(3 + 2i)(3 − 2i)
=

6 − 4i − 3i − 2

9 + 4
=

4 − 7i

13
=

4

13
− 7

13
i

2) Solve the following equation : z = (2 − i)z + 3

z = (2 − i)z + 3

z − (2 − i)z = 3

z(1 − 2 + i) = 3

z =
3

−1 + i
=

−3

1 − i

z =
−3(1 + i)

(1 − i)(1 + i)

z = −3

2
− 3

2
i

2.4.3 Properties

Property 1 : If z is a complex number and z its conjugate, then we have the

following properties :

z + z = 2Re(z) and "z is a purely imaginary" equivalent to : z + z = 0

z − z = 2i Im(z) and "z is a real number" equivalent to : z = z
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2. THE CONSTRUCTION OF COMPLEX NUMBERS

Law 1 : For all complex numbers z and z′ :

z + z′ = z + z′ , z × z′ = z × z′

with z′ 6= 0
( z

z′

)

=
z

z′
, zn = (z)n n ∈ N∗

Examples :
1) Find the Cartesian form of the conjugate z of the following complex number :

z =
3 − i

1 + i

z =

(

3 − i

1 + i

)

=
3 − i

1 + i
=

3 + i

1 − i
=

(3 + i)(1 + i)

1 + 1
=

3 + 3i + i − 1

2
= 1 + 2i

2) M is a point in the complex plane with the affix z= x+iy, x and y are real num-

bers. Let the number : Z=
5z − 2

z − 1
be related to all complex numbers z, z 6= 1

a) Express Z + Z in terms of z and z.

b) Prove that "Z is purely imaginary" is equivalent to "M is a point on a circle
missing a point".

✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏

a) 1Z + Z =
5z − 2

z − 1
+

(

5z − 2

z − 1

)

=
5z − 2

z − 1
+

5z − 2

z − 1

=
(5z − 2)(z − 1) + (5z − 2)(z − 1)

(z − 1)(z − 1)

=
5zz − 5z − 2z + 2 + 5zz − 5z − 2z + 2

(z − 1)(z − 1)

=
10zz − 7(z + z) + 4

(z − 1)(z − 1)

b) If Z is purely imaginary then Z + Z = 0. So therefore :

10zz − 7(z + z) + 4 = 0

10|z|2 − 14Re(z) + 4 = 0

10(x2 + y2)− 14x + 4 = 0

x2 + y2 − 7

5
+

2

5
= 0

(

x − 7

10

)2

− 49

100
+ y2 +

2

5
= 0

(

x − 7

10

)2

+ y2 − 9

100
= 0

(

x − 7

10

)2

+ y2 =

(

3

10

)2

0.5 1.0Ω

bc A

O
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It can therefore be deduced that the set of points M(z) is the circle centered

at Ω

(

7

10

)

and of radius
3

10
missing the point A(1).

3 Quadratic equations

3.1 Resolution

Complex numbers were created so that quadratic equations always have roots.

Theorem 2 : Any quadratic equation in C always has either two distinct

solutions or one double solution. If the equation has real coefficients, i.e.

az2 + bz + c = 0 with a ∈ R∗, b ∈ R and c ∈ R

then it has solutions in C.

1) If ∆ > 0 , two real solutions : z1 =
−b +

√
∆

2a
and z2 =

−b −
√

∆

2a

2) If ∆ = 0, a double real solution : z0 = − b

2a

3) If ∆ < 0, two conjugate complex solutions with ∆ = i2|∆|

z1 =
−b + i

√

|∆|
2a

and z2 =
−b − i

√

|∆|
2a

Example : Solve z2 − 2z + 2 = 0

∆ = 4 − 8 = −4 = (2i)2.
∆ < 0 so there are two conjugate com-
plex solutions :

z1 =
2 + 2i

2
= 1 + i

z2 =
2 − 2i

2
= 1 − i

We can write an algorithm to calculate
the roots of : Ax2 + Bx + C

Variables: A, B, C, D, X, Y real numbers
Inputs and initialization

Input A, B, C
B2 − 4AC → D

Processing
if D > 0 then

(−B +
√

D)/(2A) → X

(−B −
√

D)/(2A) → Y
else

(−B + i
√

|D|)/(2A) → X

(−B − i
√

|D|)/(2A) → Y
end

Output : Print X, Y

3.2 Applications to higher degree equations

Theorem 3 : Any polynomial of degree n in C has n distinct or multiple roots.

If a is a root then the polynomial can be factorized by (z − a)
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Example : Consider following equation in C : z3−(4+i)z2+(13+4i)z−13i=0

1) Prove that i is a solution to the equation

2) Determine the real numbers a, b and c such that :

z3 − (4 + i)z2 + (13 + 4i)z − 13i = (z − i)(az2 + bz + c).

3) Solve the equation.

✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏

1) Find all check that i is indeed a solution to the equation :

i3 − (4 + i)i2 + (13 + 4i)i − 13i = −i + 4 + i + 13i − 4 − 13i = 0

The quantity (z − i) can therefore be factored out, i being a solution to the
equation.

2) The coefficients can be identified by expanding the expression into its initial
form :

(z − i)(az2 + bz + c) = az3 + bz2 + cz − iaz2 − ibz − ic

= az3 + (b − ia)z2 + (c − ib)z − ic

The following system of equations is obtained :


















a = 1

b − ia = −4 − i

c − ib = 13 + 4i

− ic = −13i

⇔











a = 1

b = −4

c = 13

3) The equation becomes : (z − i)(z2 − 4z + 13) = 0

So therefore z = i or z2 − 4z + 13 = 0.

∆ = 16 − 52 = −36 = (6i)2

Two conjugate complex solutions are obtained :

z1 =
4 + 6i

2
= 2 + 3i or z2 =

4 − 6i

2
= 2 − 3i

Conclusion : S = {i ; 2 − 3i ; 2 + 3i}

4 Polar and exponential form

4.1 Polar form

4.1.1 Definition

Definition 3 : The polar form of a

complex number z (z 6= 0) whose Car-
tesian form is a + ib, is :

z = r(cos θ + i sin θ)

with

r = |z| and θ = arg(z) [2π] O

M(z)b
|z|

arg(z)

a~u

~v
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Note : The polar form is related to the polar coordinates of a point.

Examples :
1) Find the polar form of z = 1 − i

First determine the modulus : |z| =
√

12 + (−1)2 =
√

2

We determine an argument : cos θ =
1√
2
=

√
2

2
and sin θ = −

√
2

2

It can then be deduced that θ = −π

4
[2π], hence :

z =
√

2

[

cos

(−π

4

)

+ i sin

(−π

4

)]

2) Find Cartesian form of z =
√

3
[

cos
(

π

3

)

+ i sin
(

π

3

)]

We find that z =
√

3

(

1

2
+ i

√
3

2

)

=

√
3

2
+

3

2
i

4.1.2 Properties of the modulus and argument

Property 2 : For all complex numbers z other than 0, the following relations

apply :
| − z| = |z| and arg(−z) = arg(z) + π [2π]

|z| = |z| et arg(z) = −arg(z) [2π]

Theorem 4 : For all complex numbers z and z′ other than 0, the following

relations apply :

|z z′| = |z| |z′| and arg(z z′) = arg(z) + arg(z′) [2π]

|zn| = |z|n and arg(zn) = n arg(z) [2π]

∣

∣

∣

z

z′

∣

∣

∣
=

|z|
|z′| and arg

( z

z′

)

= arg(z)− arg(z′) [2π]

Proof : z = r(cos θ + i sin θ) and z′ = r′(cos θ
′ + i sin θ

′). we deduce that :

z z′ = r r′(cos θ + i sin θ)(cos θ
′ + i sin θ

′)

= r r′(cos θ cos θ
′ + i cos θ sin θ

′ + i sin θ cos θ
′ − sin θ sin θ

′)

= r r′(cos θ cos θ
′ − sin θ sin θ

′ + i(cos θ sin θ
′ + sin θ cos θ

′)

= r r′(cos(θ + θ
′) + i sin(θ + θ

′))

By identification, it can then be deduced that :

|z z′| = r r′ = |z| |z′| and arg(z z′) = arg(z) + arg(z′) [2π]

The equalities |zn| = |z|n and arg(zn) = narg(z) are proven by induction
of the properties of the product.
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As for the quotient, let Z =
z

z′
, therefore z = Z × z′, and according to the pro-

perties of the product we find that :

|z| = |Z| × |z′| ⇔ |Z| = |z|
|z′|

arg(z) = arg(Z) + arg(z′) [2π] ⇔ arg(Z) = arg(z)− arg(z′) [2π]

4.2 Exponential form

4.2.1 Definition

Let us define the function f whose domain is R and codomain is C such that :
f (θ) = cos θ + i sin θ.

Let us calculate f (θ) f (θ′)

f (θ) f (θ′) = (cos θ + i sin θ)(cos θ
′ + i sin θ

′)

= (cos θ cos θ
′ + i cos θ sin θ

′ + i sin θ cos θ
′ − sin θ sin θ

′)

= (cos θ cos θ
′ − sin θ sin θ

′ + i(cos θ sin θ
′ + sin θ cos θ

′)

= (cos(θ + θ
′) + i sin(θ + θ

′))

= f (θ + θ
′)

We therefore find that f (θ + θ
′) = f (θ) f (θ′). This is a characteristic property of

exponential function. Indeed, the only functions differentiable in R which trans-
form a sum into a product are those that satisfy f (x) = ekx or else the zero func-
tion. Here we have f (0) = cos 0 = 1, so f cannot be the zero function , we there-
fore have f (x) = ekx

Let’s take the derivative of the function f to determine k :

f ′(θ) = − sin θ + i cos θ

= i2 sin θ + i cos θ

= i(cos θ + i sin θ)

= i f (θ)

we then find k = i because
(

ekx
)′
= kekx

We obtain the following equality from these two properties : eiθ = cos θ + i sin θ.

Definition 4 : The exponential form of a complex number z 6= 0, is :

z = reiθ with r = |z| and θ = arg(z) [2π]

Note : We can now sit back and admire the expression : e i π + 1 = 0.

This expression contains the most important numbers in the history of mathema-
tics :
• 0 and 1 for arithmetic
• π for geometry
• e for analysis
• i for complex numbers
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5 Complex numbers and vectors

5.1 Definition

Definition 5 : Consider the complex plane with an orthonormal basis

(O,
−→
u ,

−→
v ), the following relations apply to point M(z)

z−−→
OM

= z and OM = |z| and (
−→
u ,

−−→
OM ) = arg(z)

5.2 Affix of a vector

For A(zA) and B(zB), we have :
−→
AB =

−→
OB −

−−→
OA ⇔ z−−→

AB
= zB − zA

Law 2 : For all points A et B in the complex plane :

z−→
AB

= zB − zA AB = |zB − zA| (
−→
u ,

−→
AB ) = arg(zB − zA)

Example : Given : A(2 + i) and B(−1 − 2i), determine the coordinates of the

vector
−→
AB , the distance AB and the angle (~u,

−→
AB ).

• We have : z−→
AB

= zB − zA = −1 − 2i − 2 − i = −3 − 3i then
−→
AB =

(−3;−3)

• We have : AB = |zB − zA| =
√

9 + 9 = 3
√

2 then AB = 3
√

2

• We have :

cos θ = − 3

3
√

2
= −

√
2

2

sin θ = − 3

3
√

2
= −

√
2

2



















θ = −3π

4
[2π] then (~u,

−→
AB ) =

−3π

4
[2π]

5.3 Set of points

Let us determine a set E of points M satisfying a property with the affix z of M.

• |z − zA| = r with r > 0 ⇔ AM = r

E is the circle centered at A and of radius r

• |z − zA| = |z − zB| ⇔ AM = BM

E is the perpendicular bisector of segment [AB]
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5.4 Sum of two vectors

Theorem 5 : Let
−→
u1 (z1),

−→
u2 (z2) and

−→
u3 (z3) be given such that :

−→
u3 =

−→
u1 +

−→
u2

we therefore deduce that :

z3 = z1 + z2

and the triangular inequality :

|z1 + z2| 6 |z1|+ |z2|
O

~u1

~u2
~u1 + ~u2

|z2|

|z1||z 1
+

z 2
|

~u

~v

5.5 Oriented angles

Theorem 6 : For all points A, B, C and D such that (A 6=B) and (C 6=D), we have

the following equality :

(
−→
AB ,

−−→
CD ) = arg

(

zD − zC

zB − zA

)

Proof : According to the rules governing oriented angles :

(~v,~u) = −(~u,~v) and (~u, ~w) = (~u,~v) + (~v, ~w)

we can therefore deduce the following :

(
−→
AB ,

−−→
CD ) = (

−→
AB ,

−→
u ) + (

−→
u ,

−−→
CD )

= (
−→
u ,

−−→
CD )− (

−→
u ,

−→
AB )

= arg(z−−→
CD

)− arg(z−→
AB

)

= arg(zD − zC)− arg(zB − zA)

= arg

(

zD − zC

zB − zA

)

5.6 Collinearity and orthogonality

Property 3 : Alignment of 3 distinct points or parallelism of two lines

A, B, C aligned ⇔
−→
AB and

−−→
AC collinear ( 6=

−→
0 ) ⇔ zC − zA

zB − zA
∈ R

(AB) and (CD) parallel ⇔
−→
AB and

−−→
CD collinear ( 6=

−→
0 ) ⇔ zD − zC

zB − zA
∈ R
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If
−→
AB and

−−→
AC are collinear then : (

−→
AB ,

−−→
AC ) = 0 or (

−→
AB ,

−−→
AC ) = π

We deduce that arg

(

zC − zA

zB − zA

)

= 0 or arg

(

zC − zA

zB − zA

)

= π

The same technique is used with the vectors
−→
AB and

−−→
CD for two parallel lines

Property 4 : Proving the orthogonality of two lines. If A 6=B and C 6=D, then

(AB) ⊥ (CD) ⇔
−→
AB ·

−−→
CD = 0 ⇔ zD − zC

zB − zA
purely imaginary

If
−→
AB and

−−→
CD are orthogonal then : (

−→
AB ,

−−→
CD ) =

π

2
or (

−→
AB ,

−−→
CD ) = −π

2

Therefore : arg

(

zD − zC

zB − zA

)

=
π

2
or arg

(

zD − zC

zB − zA

)

= −π

2

5.7 Triangles in the complex plane

To prove that the triangle ABC is :

• Isosceles with vertex angle A : AB = AC ⇔ |zB − zA| = |zC − zA|

• Equilateral : AB = AC = BC or AB = AC and (
−→
AB ,

−−→
AC ) = ±π

3

⇔ |zB − zA| = |zC − zA| = |zC − zB|

⇔ |zB − zA| = |zC − zA| et arg

(

zC − zA

zB − zA

)

= ±π

3

• Right-angled at A :
−→
AB ·

−−→
AC = 0 ⇔ zC − zA

zB − zA
purely imaginary

• Isoceles right-angled at A : AB = AC and
−→
AB ·

−−→
AC =0 ⇔ zC − zA

zB − zA
= ±i
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