Révision du 08 juin 2018

Exercice 1

Cours

- 1) Trouver tous les diviseurs de 96. Vérifier votre résultats en calculant le nombre de diviseurs.
- 2) d divise 5n + 1 et 3n 4. Montrer que d divise 23. Valeurs possibles pour d?
- 3) L'égalité $1600 = 17 \times 93 + 19$ correspond-elle à la division de 1600 par 17?
- 4) Démontrer que $2011^{2011} \equiv 2$ [7].
- 5) Déterminer, par l'algorithme d'Euclide, le pgcd de 935 et 517.
- 6) Démontrer le théorème de Bézout : $pgcd(a, b) = 1 \iff \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 1$
- 7) Déterminer, en remontant l'algorithme d'Euclide, un solution à l'équation 59x + 27y = 1. En déduire toutes les solution dans \mathbb{N}^2
- 8) Démontrer le théorème de Gauss : Si a divise bc et pgcd(a, b) = 1 alors, a divise c.
- 9) Démontrer la factorisation standard pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$:

$$x^{n} - 1 = (x - 1)(x^{n+1} + x^{n-2} + \dots + 1)$$

En déduire que si n n'est pas premier, les nombres de la forme $2^n - 1$, avec $n \ge 2$, ne sont pas premier. La réciproque est-elle vraie?

Exercice 2

Pondichéry mai 2018

À toute lettre de l'alphabet on associe un nombre entier x compris entre 0 et 25 comme indiqué dans le tableau ci-dessous :

Lettre	A	В	С	D	Е	F	G	Н	I	J	K	L	M
х	0	1	2	3	4	5	6	7	8	9	10	11	12
Lettre	N	О	P	Q	R	S	T	U	V	W	X	Y	Z

Le « chiffre de RABIN » est un dispositif de cryptage asymétrique inventé en 1979 par l'informaticien Michael Rabin.

Alice veut communiquer de manière sécurisée en utilisant ce cryptosystème. Elle choisit deux nombres premiers distincts p et q. Ce couple de nombres est sa clé privée qu'elle garde secrète.

Elle calcule $n = p \times q$ et elle choisit un nombre entier naturel B tel que $0 \le B \le n - 1$. Si Bob veut envoyer un message secret à Alice, il le code lettre par lettre.

Le codage d'une lettre représentée par le nombre entier x est le nombre y tel que :

$$y \equiv x(x+B)$$
 [n] avec $0 \le y \le n$.

Dans tout l'exercice on prend p = 3, q = 11 donc $n = p \times q = 33$ et B = 13.

Partie A: Cryptage

Bob veut envoyer le mot « NO » à Alice.

PAUL MILAN 1 TERMINALE S SPÉ

- 1) Montrer que Bob code la lettre « N » avec le nombre 8.
- 2) Déterminer le nombre qui code la lettre « O ».

Partie B : Décryptage

Alice a reçu un message crypté qui commence par le nombre 3.

Pour décoder ce premier nombre, elle doit déterminer le nombre entier x tel que :

$$x(x+13) \equiv 3$$
 [33] avec $0 \le x < 26$.

- 1) Montrer que $x(x + 13) \equiv 3$ [33] équivaut à $(x + 23)^2 \equiv 4$ [33].
- 2) a) Montrer que si $(x+23)^2 \equiv 4$ [33] alors le système $\begin{cases} (x+23)^2 \equiv 4 & [3] \\ (x+23)^2 \equiv 4 & [11] \end{cases}$ est vérifié. b) Réciproquement, montrer que si $\begin{cases} (x+23)^2 \equiv 4 & [3] \\ (x+23)^2 \equiv 4 & [11] \end{cases}$ alors $(x+23)^2 \equiv 4$ [33].

 - c) En déduire que $x(x+13) \equiv 3$ [33] \Leftrightarrow $\begin{cases} (x+23)^2 \equiv 1 & [3] \\ (x+23)^2 \equiv 4 & [11] \end{cases}$
- 3) a) Déterminer les nombres entiers naturels a tels que $0 \le a < 3$ et $a^2 \equiv 1$ [3].
 - b) Déterminer les nombres entiers naturels b tels que $0 \le b < 11$ et $b^2 \equiv 4$ [11].
- 4) a) En déduire que $x(x + 13) \equiv 3$ [33] équivaut aux quatre systèmes suivants :

$$\begin{cases} x \equiv 2 \ [3] \\ x \equiv 8 \ [11] \end{cases} \text{ ou } \begin{cases} x \equiv 0 \ [3] \\ x \equiv 1 \ [11] \end{cases} \text{ ou } \begin{cases} x \equiv 2 \ [3] \\ x \equiv 1 \ [11] \end{cases} \text{ ou } \begin{cases} x \equiv 0 \ [3] \\ x \equiv 8 \ [11] \end{cases}$$

b) On admet que chacun de ces systèmes admet une unique solution entière x telle que $0 \le x < 33$.

Déterminer, sans justification, chacune de ces solutions.

5) Compléter l'algorithme suivant pour qu'il affiche les quatre solutions trouvées dans la question précédente.

```
Traitement
pour ... allant de ... à ... faire
    si le reste de la division de ... par ... est égal à ... alors
        Afficher ...
    fin
fin
```

6) Alice peut-elle connaître la première lettre du message envoyé par Bob? Le « chiffre de RABIN » est-il utilisable pour décoder un message lettre par lettre?