Sections planes de surfaces. Annales

Exercice 1:

Antille Guyane Sept 2009

L'annexe est à rendre avec la copie

L'espace est muni d'un repère orthonormé $\left(O, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k}\right)$.

On considère la surface S_1 d'équation $z = x^2 + y^2$, et la surface S_2 d'équation z = xy + 2x.

Partie A

On note \mathcal{P} le plan d'équation x = 2, E_1 l'intersection de la surface S_1 et du plan \mathcal{P} et E_2 l'intersection de la surface S_2 et du plan \mathcal{P} .

En **annexe**, le plan \mathcal{P} est représenté muni du repère $\left(A; \overrightarrow{j}, \overrightarrow{k}\right)$ où A est le point de coordonnées (2; 0; 0).

- 1) a) Déterminer la nature de l'ensemble E_1 .
 - b) Déterminer la nature de l'ensemble E_2 .
- 2) a) Représenter les ensembles E_1 et E_2 sur la feuille **annexe**.
 - b) Dans le repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ donner les coordonnées des points d'intersection B et C des ensembles E_1 et E_2 .

Partie B

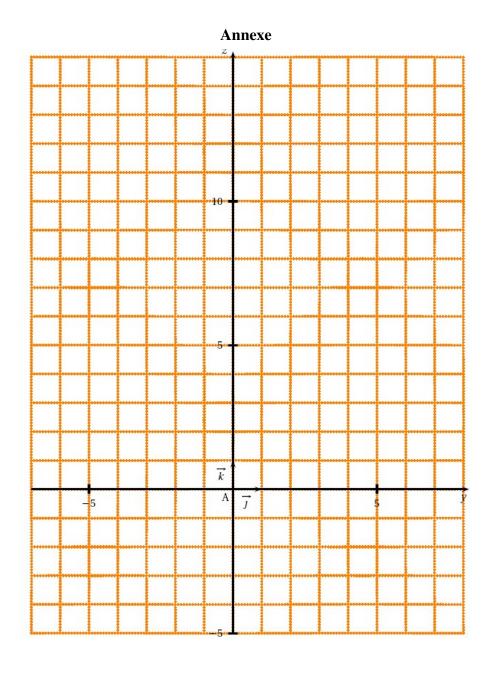
On pourra utiliser sans démonstration la propriété suivante :

« soient a, b et c des entiers avec a premier. Si a divise bc alors a divise b ou a divise c. »

L'objectif de cette partie est de déterminer les points d'intersection M(x; y; z) des surfaces S_1 et S_2 où y et z sont des entiers relatifs et x un nombre premier.

On considère un tel point M(x; y; z).

- 1) a) Montrer que y(y x) = x(2 x).
 - b) En déduire que le nombre premier x divise y.
- 2) On pose y = kx avec $k \in \mathbb{Z}$.
 - a) Montrer que x divise 2, puis que x = 2.
 - b) En déduire les valeurs possibles de k.
- 3) Déterminer les coordonnées possibles de *M* et comparer les résultats avec ceux de la Partie A, question 2b)



Exercice 2:

Pondichéry avril 2011

Partie A

On considère, dans un repère $\left(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ de l'espace, la surface S d'équation :

$$z = (x - y)^2.$$

1) On note \mathcal{E}_1 l'intersection de \mathcal{S} avec le plan \mathcal{P}_1 d'équation z = 0.

Déterminer la nature de \mathcal{E}_1 . On note \mathcal{E}_2 l'intersection de \mathcal{S} avec le plan \mathcal{P}_2 d'équation x = 1.

Déterminer la nature de \mathcal{E}_2 .

Partie B

On considère, dans un repère $\left(0, \overrightarrow{\iota}, \overrightarrow{J}, \overrightarrow{k}\right)$ de l'espace, la surface S' d'équation :

$$z = xy$$
.

1) On note \mathcal{E}_3 l'intersection de \mathcal{S}' avec le plan \mathcal{P}_1 d'équation z = 0. Déterminer la nature de \mathcal{E}_3

2) On note \mathcal{E}_4 l'intersection de \mathcal{S}' avec le plan \mathcal{P}_3 d'équation z=1. Déterminer la nature de \mathcal{E}_4 .

Partie C

On note \mathcal{E}_5 l'intersection de \mathcal{S} et de \mathcal{S}' .

Dans cette partie, on souhaite démontrer que le seul point appartenant à \mathcal{E}_5 dont les coordonnées sont des entiers naturels est le point O(0; 0; 0).

On suppose qu'il existe un point M appartenant à \mathcal{E}_5 et dont les coordonnées x, y et z sont des entiers naturels.

- 1) Montrer que si x = 0, alors le point M est le point O.
- 2) On suppose dorénavant que l'entier x n'est pas nul.
 - a) Montrer que les entiers x, y et z vérifient $x^2 3xy + y^2 = 0$. En déduire qu'il existe alors des entiers naturels x' et y' premiers entre eux tels que $x'^2 - 3x'y' + y'^2 = 0$.
 - b) Montrer que x' divise y'^2 , puis que x' divise y'.
 - c) Établir que y' vérifie la relation $1 3y' + y'^2 = 0$.
 - d) Conclure.

EXERCICES TERM S SPÉ

Exercice 3:

Amérique du Sud Nov 2008

L'espace est muni d'un repère orthonormé $(O, \vec{t}, \vec{j}, \vec{k})$.

Soit D la droite passant par le point A de coordonnées (0;0;2) et de vecteur directeur \overrightarrow{u} de coordonnées (1;1;0) et soit D' la droite dont une représentation paramétrique est :

$$\begin{cases} x = t' \\ y = -t' & (t' \in \mathbb{R}) \\ z = -2 \end{cases}$$

Le but de l'exercice est d'étudier l'ensemble S des points de l'espace équidistants de D et de D'.

1) Une équation de S

- a) Montrer que D et D' sont orthogonales et non coplanaires.
- b) Donner une représentation paramétrique de la droite D.
 Soit M un point de l'espace de coordonnées (x; y; z) et H le projeté orthogonal de M sur D. Montrer que MH a pour coordonnées

$$\left(\frac{-x+y}{2}; \frac{x-y}{2}; 2-z\right)$$

En déduire MH^2 en fonction de x, y et z.

Soit K le projeté orthogonal de M sur D'. Un calcul analogue au précédent permet d'établir que : $MK^2 = \frac{(x+y)^2}{2} + (2+z)^2$, relation que l'on ne demande pas de vérifier.

- c) Montrer qu'un point M de coordonnées (x ; y ; z) appartient à S si et seulement si $z = -\frac{1}{4}xy$.
- 2) Étude de la surface S d'équation $z = -\frac{1}{4}xy$
 - a) On coupe S par le plan (xOy). Déterminer la section obtenue.
 - b) On coupe *S* par un plan *P* parallèle au plan (*x*O*y*). Quelle est la nature de la section obtenue ?
 - c) Dans cette question, toute trace de recherche, même incomplète, ou d'initiative même infructueuse sera prise en considération dans l'évaluation.

On coupe S par le plan d'équation x + y = 0. Quelle est la nature de la section obtenue ?

EXERCICES TERM S SPÉ

Exercice 4:

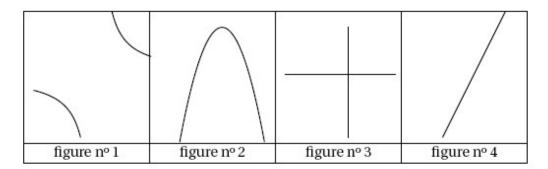
Centre étrangers juin 2009

1) On note (E) l'équation 3x + 2y = 29 où x et y sont deux nombres entiers relatifs.

- a) Déterminer un couple d'entiers solution de l'équation (E).
- b) Déterminer tous les couples d'entiers relatifs solutions de l'équation (E).
- c) Préciser les solutions de l'équation (E) pour lesquelles on a à la fois $x \ge 0$ et $y \ge 0$;
- 2) Intersections d'un plan avec les plans de coordonnées L'espace est muni du repère orthonormal $(O, \vec{t}, \vec{j}, \vec{k})$ et on désigne par \mathcal{P} le plan d'équation 3x + 2y = 29.
 - a) Démontrer que \mathcal{P} est parallèle à l'axe (Oz) de vecteur directeur \overrightarrow{k} .
 - b) Déterminer les coordonnées des points d'intersection du plan \mathcal{P} avec les axes (Ox) et (Oy) de vecteurs directeurs respectifs \overrightarrow{i} et \overrightarrow{j} .
 - c) Faire une figure et tracer les droites d'intersection du plan $\mathcal P$ avec les trois plans de coordonnées.
 - d) Sur la figure précédente, placer sur la droite d'intersection des plans \mathcal{P} et (xOy), les points dont les coordonnées sont à la fois entières et positives.
- 3) Étude d'une surface

S est la surface d'équation 4z = xy dans le repère $(O, \vec{t}, \vec{j}, \vec{k})$.

Les figures suivantes représentent les intersections de S avec certains plans de l'espace.



- a) S_1 désigne la section de la surface S par le plan (xOy). Une des figures données représente S_1 laquelle?
- b) S_2 désigne la section de S par le plan R d'équation z=1. Une des figures données représente S_2 , laquelle?
- c) S_3 désigne la section de S par le plan d'équation y = 8. Une des figures données représente S_3 , laquelle?
- d) S_4 désigne la section de S par le plan P d'équation 3x + 2y = 29 de la question 2) Déterminer les coordonnées des points communs à S_4 et P dont l'abscisse x et l'ordonnée y sont des entiers naturels vérifiant l'équation 3x + 2y = 29.

Exercice 5:

La Réunion juin 2009

L'espace est muni d'un repère orthonormal $(O, \vec{t}, \vec{j}, \vec{k})$.

1) Soient F le point de coordonnées $\left(0; 0; \frac{1}{4}\right)$ et P le plan d'équation $z = -\frac{1}{4}$.

On note d(M, P) la distance d'un point M au plan P.

Montrer que l'ensemble (S) des points M de coordonnées (x ; y ; z) qui vérifient d(M, P) = MF a pour équation $x^2 + y^2 = z$.

- 2) a) Quelle est la nature de l'intersection de l'ensemble (S) avec le plan d'équation z=2?
 - b) Quelle est la nature de l'intersection de l'ensemble (S) avec le plan d'équation x = 0?

Représenter cette intersection dans le repère $(O; \overrightarrow{J}, \overrightarrow{k})$.

- 3) Dans cette question, x et y désignent des nombres entiers naturels.
 - a) Quels sont les restes possibles de la division euclidienne de x^2 par 7?
 - b) Démontrer que 7 divise $x^2 + y^2$ si et seulement si 7 divise x et 7 divise y.
- 4) Dans cette question, toute trace de recherche même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Existe-t-il des points qui appartiennent à l'intersection de l'ensemble (S) et du plan d'équation z=98 et dont toutes les coordonnées sont des entiers naturels ? Si oui les déterminer.

EXERCICES TERM S SPÉ

Exercice 6:

Pondichéry avril 2010

Les parties A et B peuvent, dans leur quasi-totalité, être traitées de façon indépendante.

Partie A

Dans cette partie, on se propose d'étudier des couples (a, b) d'entiers strictement positifs, tels que :

$$a^2 = b^3$$

Soit (a, b) un tel couple et d = PGCD(a, b). On note u et v les entiers tels que a = du et b = dv.

- 1) Montrer que $u^2 = dv^3$.
- 2) En déduire que v divise u, puis que v = 1.
- 3) Soit (a, b) un couple d'entiers strictement positifs.
 Démontrer que l'on a a² = b³ si et seulement si a et b sont respectivement le cube et le carré d'un même entier.
- 4) Dans cette question, toute trace de recherche, même incomplète, ou d'initiative même non fructueuse. sera prise en compte dans l'évaluation.

Montrer que si n est le carré d'un nombre entier naturel et le cube d'un autre entier, alors $n \equiv 0$ [7] ou $n \equiv 1$ [7].

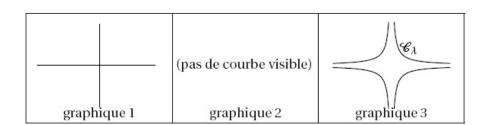
Partie B

Dans l'espace muni d'un repère orthonormal $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$, on considère la surface S d'équation $x^2 \times y^2 = z^3$.

Pour tout réel λ , on note C_{λ} la section de S par le plan d'équation $z = \lambda$.

1) Les graphiques suivants donnent l'allure de C_{λ} tracée dans le plan d'équation $z = \lambda$, selon le signe de λ .

Attribuer à chaque graphique l'un des trois cas suivants : $\lambda < 0$, $\lambda = 0$, $\lambda > 0$, et justifier l'allure de chaque courbe.



- 2) a) Déterminer le nombre de points de C_{25} dont les coordonnées sont des nombres entiers strictement positifs.
 - b) Pour cette question, on pourra éventuellement s'aider de la question 3 de la partie A.

Déterminer le nombre de points de $C_{2\ 010}$ dont les coordonnées sont des nombres entiers strictement positifs