Correction contrôle de mathématiques Du mardi 17 décembre 2013

Exercice 1

ROC et questions de cours

6 points

- 1) a) **Théorème de Bezout :** « Deux entiers relatifs a et b sont premiers entre eux si, et seulement si, il existe deux entiers relatifs u et v tels que : au + bv = 1 »
 - b) Il suffit de trouver une combinaison linéaire de a et b judicieuse pour éliminer n:

$$(-7)a + (9)b = -63n - 35 + 63n + 36 = 1$$

Il existe donc un couple (-7; 9) tel que -7a + 9b = 1 d'après le théorème de Bezout, les nombres a et b sont premiers entre eux, pour tous n

2) a) **Théorème de Gauss :** « Soit a, b et c trois entiers relatifs non nuls. Si a divise le produit bc et si a et b sont premiers entre eux alors a divise c. »

Démonstration:

- Si a divise le produit bc, alors il existe $k \in \mathbb{Z}$ tel que : bc = ka
- Si a et b sont premiers entre eux, d'après le théorème de Bezout, il existe deux entiers u et v tels que : au + bv = 1

En multipliant par c, on a : acu + bcv = c or bc = ka, donc : ac + kav = c soit a(c + kv) = c.

Donc a divise c.

- b) Soit (E): 3(x-1) = 5y
 - 5 divise 3(x-1) or pgcd(5;3) = 1 donc d'après le théorème de Gauss, 5 divise (x-1). On a donc : x-1=5k, $k \in \mathbb{Z}$ soit x=1+5k, $k \in \mathbb{Z}$
 - En remplaçant x-1=5k dans (E), on a: y=3k $k \in \mathbb{Z}$.
 - Comme $x \in \mathbb{N}$ et $y \in \mathbb{N}$ donc $1 + 5k \ge 0$ et $3k \ge 0$ soit $k \ge 0$

L'ensemble des couples d'entiers naturels (x; y) solution de (E) sont du type :

$$\begin{cases} x = 1 + 5k \\ y = 3k \end{cases} \quad k \in \mathbb{N}$$

- 3) a) Corollaire du théorème de Bezout : « L'équation ax + by = c admet des solutions entières si, et seulement si, c est un multiple du pgcd(a, b). »
 - b) D'après ce corollaire :
 - (E_1) : 9x 6y = 2 n'admet pas de solution entière car pgcd(9, 6) = 3 et 2 non multiple de 3.
 - (E_2) : 5x + 7y = 4 admet des solutions entières car pgcd(5;7) = 1 et 4 est un multiple de 1

EXERCICE 2

Application du cours

4 points

1) On a:
$$4935 = 517 \times 9 + 282$$
$$517 = 282 \times 1 + 235$$
$$282 = 235 \times 1 + 47$$
$$235 = 47 \times 5 \qquad pgcd(4935; 517) = 47$$

Paul Milan 1 Terminale S spé

On a alors: ppcm(4 935; 517) = $\frac{4935 \times 517}{47}$ = 54 285

2) Faux : L'égalité de Bezout n'est qu'une simple implication. Soit un contre-exemple :

Soit les nombres 5 et 2, on a : $5 \times 1 + 2 \times (-1) = 3$ et pourtant pgcd(5; 2) = 1

3) **Faux :** On cherche les racines de : $x^2 - 52x + 480 = 0$

$$\Delta = 52^2 - 4 \times 480 = 2704 - 1704 = 784 = 28^2$$

On obtient deux racines :
$$\frac{52 + 28}{2} = 40$$
 et $x_2 = \frac{52 - 28}{2} = 12$

Or le ppcm est un multiple du pgcd et 40 n'est pas multiple de 12.

Exercice 3

Équation diophantienne

4 points

1) On a: $8 \times 1 - 5 \times 1 = 3$. Donc le couple (1; 1) est solution de (E)

Soit
$$(x, y)$$
 une solution de (E), on a donc le système suivant :
$$\begin{cases} 8x - 5y = 3 \\ 8 \times 1 - 5 \times 1 = 3 \end{cases}$$

En soustrayant termes à termes, on obtient :
$$8(x-1) - 5(y-1) = 0$$
 soit $8(x-1) = 5(y-1)$ (E').

5 divise
$$8(x-1)$$
 et pgcd(5; 8) = 1, d'après le théorème de Gauss, il existe $k \in \mathbb{Z}$ tel que : $x-1=5k$

En remplaçant dans (E'), on obtient alors : y - 1 = 8k

Les solutions
$$(x, y)$$
 de l'équation (E) sont de la forme :
$$\begin{cases} x = 1 + 5k \\ y = 1 + 8k \end{cases} \quad k \in \mathbb{Z}$$

2) On a: 8p - 5q = (m - 1) - (m - 4) = m - 1 - m + 4 = 3

Donc le couple (p; q) est solution de (E).

3) Comme (p;q) vérifie l'équation (E), on a : p=1+5k donc m=8p+1=9+40k

On veut que
$$m > 2\,000$$
 donc $9 + 40k > 2\,000$ soit $k > \frac{2\,000 - 9}{40}$ soit $k > 49,775$

Le plus petit entier m supérieur à 2 000 est obtenu pour k = 50 soit $m = 9 + 40 \times 50 = 2 009$

Exercice 4

Théorème chinois 6 points

- 1) a) 19 et 12 sont premiers entre eux, donc d'après le théorème de Bezout, il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que : 19u + 12v = 1
 - b) De 19u + 12v = 1, on a: 12v = 1 19u et 19u = 1 12u
 - $n_0 = 6 \times 19u + 13 \times 12v = 6 \times 19u + 13 \times (1 19u) = 19u(6 13) + 13$ donc $n_0 = 13$ [19]
 - $n_0 = 6 \times 19u + 13 \times 12v = 6 \times (1 12v) + 13 \times 12v = 6 + 12v(-6 + 13)$ donc $n_0 \equiv 6$ [12]
 - c) Une solution évidente à l'équation 19u + 12v = 1 est (-5, 8) car :

$$19 \times (-5) + 5 \times 12 = -95 + 96 = 1$$

On obtient alors : $n_0 = 6 \times 19 \times (-5) + 13 \times 12 \times 8 = -570 + 1248 = 678$

- 1) a) Comme n et n_0 sont deux élément de \mathscr{S} , alors $n-n_0$ est divisible par 19 et 12. Comme 19 et 12 sont premier entre eux, d'après le corollaire du thérème de Gauss, $19 \times 12 = 228$ divise $n-n_0$. On a donc : $n-n_0 \equiv 0$ [228]
 - b) Si $n_0 = 678$, et $678 = 228 \times 3 6$, alors $n_0 \equiv -6$ [228] Donc d'après la question précédente, $n - 678 \equiv n + 6$ [228] est divisible par 228, et donc

$$n = -6 + 228k$$
 $k \in \mathbb{Z}$

2) **Application :** Soit *n* le temps, en années, nécessaire pour que les comètes A et B apparaissent la même année. Compte tenu de leurs périodes respectives, on a :

$$\begin{cases} n - 13 \equiv 0 \text{ [19]} \\ n - 6 \equiv 0 \text{ [12]} \end{cases} \Leftrightarrow \begin{cases} n \equiv 13 \text{ [19]} \\ n \equiv 6 \text{ [12]} \end{cases}$$

Donc *n* est une solution de \mathcal{S} , donc n = -6 + 228k.

Comme on cherche le plus petit entier naturel solution de \mathcal{S} , on a k=1, ce qui donne n=-6+228=222

Il faudra attendre 222 ans pour que les comètes A et B apparaissent de nouveau la même année.

Remarque: Les comètes A et B étaient apparues la même année, il y a 6 ans.