Calculs algébriques

Calculs de base

∧ Sans calculatrice.

EXERCICE 1

Calculer et simplifier les nombres suivants :

a)
$$A = \frac{-\frac{6}{5} + \frac{1}{3}}{\frac{3}{4} + \frac{2}{9}} \div \frac{\frac{1}{10} - 1}{\frac{4}{3} + \frac{7}{2}}$$

b)
$$B = 1 + \frac{2}{2 - \frac{3}{3 + \frac{4}{5 - \frac{3}{2}}}}$$

c)
$$C = \frac{1 + \frac{1}{2} - \frac{1}{3}}{2 - \frac{1}{2} - \frac{1}{4}}$$

d)
$$D = \frac{1 + \frac{1}{5}}{1 + \frac{1}{1 + \frac{4}{5}}}$$

EXERCICE 2

Simplifier et calculer les nombres suivants :

1)
$$x = \sqrt{0.49}$$

2)
$$y = \sqrt{0.9 \times 10^3}$$

2)
$$y = \sqrt{0.9 \times 10^3}$$
 3) $z = \sqrt{12} + 5\sqrt{75} - 7\sqrt{27}$

4)
$$x = \frac{16}{5\sqrt{2}}$$

$$5) \ \ y = \frac{15}{2\sqrt{15}}$$

4)
$$x = \frac{16}{5\sqrt{2}}$$
 5) $y = \frac{15}{2\sqrt{15}}$ 6) $z = \frac{2 - \sqrt{5}}{1 - 2\sqrt{5}}$

7)
$$x = \frac{4 - \sqrt{2}}{3\sqrt{2} - 1}$$

8)
$$y = \frac{1 - \sqrt{5}}{2 - \sqrt{5}} - \frac{3 - \sqrt{5}}{4 - \sqrt{5}}$$

9)
$$x = \sqrt{3 - \sqrt{5}} \times \sqrt{3 + \sqrt{5}}$$

10)
$$y = \left(\sqrt{3 - \sqrt{5}} - \sqrt{3 + \sqrt{5}}\right)^2$$

EXERCICE 3

1) Soit
$$f(x) = (5x - 3)^2 - 2(x - 1)(5x - 3)$$
.

Résoudre les équations suivantes :

a)
$$f(x) = 0$$

b)
$$f(x) = 3$$

c)
$$f(x) = 15x^2$$

2) Soit
$$g(x) = (5x - 3)^2 - (2x - 1)^2$$

Résoudre les équations suivantes :

a)
$$g(x) = 0$$

b)
$$g(x) = 8$$

c)
$$g(x) = -26x$$
.

EXERCICE 4

1) Résoudre, dans R, les équations suivantes :

a)
$$9(x-3)^2 = x^2 - 4x + 4$$

b)
$$(3x+1)^2 = 2(9x^2-1)$$

c)
$$\frac{x-1}{x+1} = \frac{x+1}{x-2}$$

2) Résoudre, dans R, les inéquations suivantes :

a)
$$\frac{3x+1}{x+2} \ge 0$$

b)
$$(3x+1)^2 \le 2(3x+1)(x+1)$$

Second degré

2.1 Forme canonique

EXERCICE 5

Déterminer les extremum des fonctions suivantes, définies sur R, sans calculer leur dérivée.

a)
$$f(x) = -3(x-2)^2 + 5$$

b)
$$g(x) = 2x^2 - 6x + 3$$

2.2 Équations

EXERCICE 6

Résoudre, dans R, les équations suivantes :

1)
$$x^2 - 6x + 8 = 0$$

2)
$$x^2 - 2x + 5 = 0$$

3)
$$5x^2 - 10x + 5 = 0$$

4)
$$3x^2 - 6x + 8 = x^2 + 2x + 10$$

$$5) \ \frac{2x-1}{x-5} = \frac{x+1}{x-3}$$

EXERCICE 7

Soient les fonctions f et g définies sur \mathbb{R} respectivement par : $f(x) = 2x^2 - 3x + 1$ et g(x) = -4x + 2

Déterminer les intersections et les positions des deux courbes \mathscr{C}_f et \mathscr{C}_g représentations respectives des fonction f et g.

EXERCICE 8

Résoudre, dans R, les équations suivantes :

a)
$$4x^4 - 7x^2 + 3 = 0$$

b)
$$4x - 7\sqrt{x} + 3 = 0$$

a)
$$4x^4 - 7x^2 + 3 = 0$$
 b) $4x - 7\sqrt{x} + 3 = 0$ c) $4x^2 - 7|x| + 3 = 0$

EXERCICE 9

Résoudre, dans \mathbb{R} , $x^4 - 2x^3 - x^2 - 2x + 1 = 0$. On pourra poser $X = x + \frac{1}{x}$

EXERCICE 10

Soit l'équation : $3x^2 - ax + 6 = 0$ (a étant un réel fixé). Déterminer le réel a tel que 2 soit solutions de l'équation; en déduire l'autre solution.

2.3 Équations paramétriques

EXERCICE 11

Soit (E_m) l'équation : $(m-1)x^2 - (2m+3)x + m = 0$, avec $m \in \mathbb{R}$.

- a) Discuter, selon les valeurs du paramètre m, le nombre de solution de l'équation (E_m) .
- b) Déterminer l'ensemble A des réels m pour lesquels l'équation (E_m) admette deux solutions positives.
- c) Déterminer l'ensemble B des réels m pour lesquels l'équation (E_m) admette deux solutions négatives.
- d) Déterminer l'ensemble C des réels m pour lesquels l'équation (E_m) admette deux solutions de signes contraires.

EXERCICE 12

Soit (E_m) l'équation : $(3m-1)x^2 + (m+6)x - m - 9 = 0$, avec $m \in \mathbb{R}$.

- a) Déterminer l'ensemble A des réels m pour lesquels l'équation (E_m) admette deux solutions strictement positives.
- b) Déterminer l'ensemble B des réels m pour lesquels l'équation (E_m) admette deux solutions strictement négatives.

2.4 Somme et produit des racines

EXERCICE 13

Soit l'équation (E) : $3x^2 + 7x - 2 = 0$.

- 1) Montrer que l'équation (E) admet deux solutions x_1 et x_2
- 2) On pose $S = x_1 + x_2$ et $P = x_1x_2$.

Après avoir exprimé les quantités suivantes en fonction de S et P, calculer :

a)
$$x_1^2 + x_2^2$$

b)
$$x_1^3 + x_2^3$$

c)
$$(x_1 + x_2)^2$$

d)
$$\frac{1}{x_1} + \frac{1}{x_2}$$

e)
$$\frac{1}{x_1 - 2} + \frac{1}{x_2 - 2}$$

EXERCICE 14

Soit l'équation (E_m): $x^2 - (2m+3)x + m^2 + 5 = 0$ avec $m \in \mathbb{R}$

- 1) Déterminer les valeurs du paramètre m pour lesquels l'équation (E_m) admette deux solutions x_1 et x_2 .
- 2) a) Déterminer la valeur de m tel que : $x_1^2 + x_2^2 = 53$
 - b) Déterminer la valeur de m tel que : $|x_1 x_2| = 13$

2.5 Équations irrationnelles

EXERCICE 15

Résoudre, dans R, les équations suivantes en soignant particulièrement les conditions de résolution.

a)
$$\sqrt{x+2} = 3x - 4$$

b)
$$\sqrt{3x^2 - 11x + 21} = 2x - 3$$

c)
$$2x + 1 + \sqrt{-7x - 5} = 0$$

d)
$$x + \sqrt{2x + 28} = 26$$

e)
$$\sqrt{x+2} + \sqrt{3x-5} = 7$$

f)
$$\sqrt{5x+9} - \sqrt{x-4} = \sqrt{3x+1}$$

2.6 Inéquations

EXERCICE 16

Résoudre, dans R, les inéquations suivantes :

1)
$$2x^2 + 3x + 1 \ge 0$$

4)
$$\frac{2x^2+3x+1}{x^2-4} \le 0$$

2)
$$-2x^2 + x - 3 \ge 0$$

5)
$$\frac{2x+1}{x-2} \leqslant \frac{x+1}{x+3}$$

3)
$$-x^2 + 8x - 16 \ge 0$$

EXERCICE 17

Résoudre, dans \mathbb{R} , les inéquations suivantes :

1)
$$\frac{x^2 + 2x - 15}{-x^2 + 2x + 5} > 0$$

2)
$$\frac{3x^2 - 6x + 4}{2x^2 - x - 1} > 2$$

3)
$$\frac{2x-3}{x-2} - \frac{4x-1}{3x^2 - 2x - 8} < \frac{65}{32}$$
 4) $2 < (2x-3)^2 \le \frac{25}{4}$

4)
$$2 < (2x - 3)^2 \leqslant \frac{25}{4}$$

EXERCICE 18

1) Déterminer la valeur du réel *m* pour que les inéquations suivantes soient vérifiées pour tout x réel.

a)
$$mx^2 - (2m+1)x + m < 0$$

a)
$$mx^2 - (2m+1)x + m < 0$$
 b) $(m+1)^2x^2 - 2x + 2m + 1 \ge 0$

2) Déterminer la valeur du réel m pour que l'équation suivante ait deux solutions, x_1 et x_2 telles que $x_1 < 2 < x_2$

$$(m-1)^2x^2 - mx + 3m + 1 = 0$$

2.7 Systèmes

EXERCICE 19

Déterminer les couples (x; y) tels que :

$$\begin{cases} x + y = 1 \\ xy = -6 \end{cases}$$

2)
$$\begin{cases} x + y = 2 \\ x^2 + y^2 - xy = 13 \end{cases}$$

2)
$$\begin{cases} x+y=2\\ x^2+y^2-xy=13 \end{cases}$$
 3)
$$\begin{cases} xy^2+x^2y=-30\\ xy+x+y=-13 \end{cases}$$

2.8 Équations du 3e degré

EXERCICE 20

Soit l'équation (E) : $x^3 + 6x^2 + 9x + 4 = 0$

- a) On pose X = x+2. Montrer que (E) devient (E₁): $X^3 3X + 2 = 0$
- b) Déterminer une solution évidente α de l'équation (E₁).
- c) À l'aide d'une division euclidienne déterminer *a*, *b*, *c* tels que :

$$X^{3} - 3X + 2 = (X - \alpha)(aX^{2} + bX + c)$$

d) Déduire alors toutes les solutions de (E₁) puis de (E).

3 Pivot de Gauss

EXERCICE 21

Résoudre les systèmes 3 x 3 à l'aide du pivot de Gauss :

a)
$$\begin{cases} x + 3y + z = 30 \\ 2x - y - z = -3 \\ x + y - z = 4 \end{cases}$$
 b)
$$\begin{cases} 6x - 5y + 3z = 26 \\ x - 2y - 3z = -32 \end{cases}$$
 c)
$$\begin{cases} 2x + 3y - 4z = 15 \\ 5x + y - z = 31 \\ 7x - 2y - 5z = 46 \end{cases}$$

EXERCICE 22

Un rentier fait trois parts de sa fortune, qu'il place à 3%, 4% et 5%. Il obtient ainsi un revenu annuel de $322400 \in$. Il modifie ensuite son placement : la première et la troisième part sont placé à 4%, la seconde à 5%. Le revenu annuel est alors de $377920 \in$. Quelles sont ces trois parts, leur total s'élevant à $8448000 \in$?

4 Calcul de dérivées

EXERCICE 23

Dans chaque cas, calculer la fonction dérivée de la fonction f en précisant le domaine de validité de vos calculs.

1)
$$f(x) = \frac{x+1}{x^2+1}$$

$$2) \ f(x) = \frac{x+1}{\sqrt{x}}$$

3)
$$f(x) = \left(x + \frac{1}{x}\right)\sqrt{x}$$

4)
$$f(x) = \sqrt{x^2 + 1}$$

5)
$$f(x) = (3x-1)^2(1-2x)^3$$

6)
$$f(x) = \frac{\sin x}{x}$$

$$7) \ f(x) = \cos x \sin x$$

$$8) \ f(x) = \frac{1}{\cos x}$$

$$9) \ f(x) = \sin^3 x$$

$$10) \ f(x) = \tan(3x)$$

$$11) \ f(x) = \tan^2 x$$

$$12) f(x) = \frac{\sin x + \cos x}{1 + \cos x}$$