Morphismes de Groupes

EXERCICE 1

Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = x^n$.

- 1) Montrer que f est un morphisme du groupe de (\mathbb{R}^* , \times) dans lui-même.
- 2) Déterminer son image et son noyau.

EXERCICE 2

- 1) Montrer que l'application $\exp : \mathbb{C} \to \mathbb{C}^*$ est un morphisme du groupes $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) .
- 2) Déterminer son image et son noyau.

EXERCICE 3

Soit *G* un groupe noté multiplicativement.

Pour $a \in G$, on note t_a l'application de G vers G définie par $t_a(x) = axa^{-1}$.

- 1) Montrer que t_a est un morphisme du groupe (G, \times) dans lui-même.
- 2) Vérifier que : $\forall a, b \in G$, $t_a \circ t_b = t_{ab}$
- 3) Montrer que t_a est bijective et déterminer son application réciproque.
- 4) En déduire que $T = \{t_a, a \in G\}$ muni du produit de composition est un groupe.

EXERCICE 4

Soit (G,*), (G',\top) deux groupes et $f:G\to G'$ un morphisme de groupes.

- 1) Montrer que pour tout sous-groupe H de G, f(H) est un sous-groupe de (G', \top) .
- 2) Montrer que pour tout sous-groupe H' de G', $f^{-1}(H')$ est un sous-groupe de (G,*).

EXERCICE 5

Soit (G, *) un groupe et $a \in G$.

On note, e l'élément neutre et x^{-1} le symétrique d'un élément x, pour la loi *. On définit une loi de composition interne \top sur G par $x \top y = x * a * y$.

- 1) Montrer que (G, \top) est un groupe.
- 2) Soit H un sous groupe de (G,*) et $K = a^{-1} * H = \{a^{-1} * x, x \in H\}$. Montrer que K est un sous groupe de (G,\top) .
- 3) Montrer que $f: x \to x * a^{-1}$ est un isomorphisme de (G, *) vers (G, \top) .