Exercices

Généralités sur les fonctions

Exercice 1:

Axe de symétrie

- 1) Sur votre calculatrice tracer la fonction f définie par $f(x) = x^2 2x 1$
- 2) Le graphique permet de conjecturer un axe de symétrie. Quel est son équation?
- 3) Démontrer cette conjecture

Exercice 2:

Centre de symétrie

- 1) Sur votre calculatrice tracer la fonction f définie par $f(x) = \frac{2x-1}{x+1}$
- 2) Le graphique permet de conjecturer un centre de symétrie. Quelles sont ses coordonnées ?
- 3) Démontrer cette conjecture

Exercice 3:

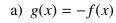
Axe de symétrie

- 1) Sur votre calculatrice tracer la fonction f définie par $f(x) = \frac{4}{x^2 4x}$
- 2) Le graphique permet de conjecturer un axe de symétrie. Quel est son équation ?
- 3) Démontrer cette conjecture

Exercice 4:

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 + 1$ représentée ci-dessous.

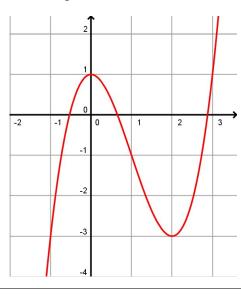
1) Déduire les courbes des fonctions g, h, k définies sur \mathbb{R} par :



b)
$$h(x) = |f(x)|$$

c)
$$k(x) = f(-x)$$

- 2) On définie sur \mathbb{R} la fonction F par : F(x) = f(|x|).
 - a) Démontrer que la fonction F est paire
 - b) En déduire la représentation de F



Exercice 5:

Résolution graphique

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 3x^4 - 4x^3 - 12x^2 + 15$ dont la représentation se trouve ci-dessous :

- 1) Déterminer le tableau de variation de la fonction f
- 2) Résoudre les équations suivantes :

$$a) f(x) = 0$$

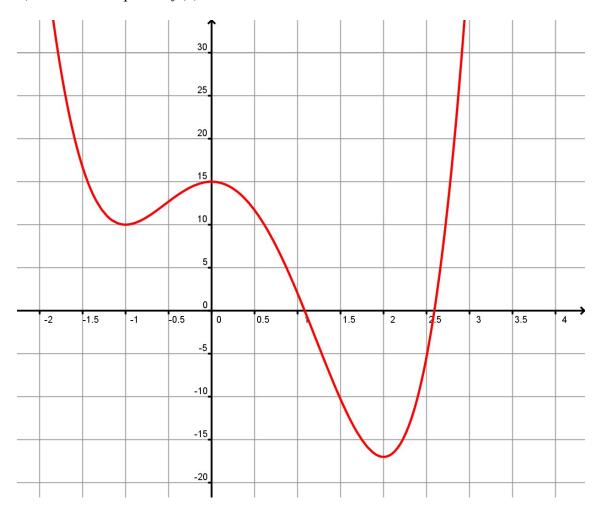
b)
$$f(x) = 13$$

- 3) D'une façon générale donner le nombre et le signe des solutions de l'équation f(x) = m où m est un réel quelconque.
- 4) Résoudre les inéquations suivantes :

a)
$$f(x) \le 0$$

b)
$$f(x) > 13$$

5) Résoudre l'équation f(x) = 3x



Exercice 6:

Composée de deux fonctions

Pour les cas suivants, calculer $g \circ f(x)$, $f \circ g(x)$ après avoir préciser les ensembles de définition des fonctions $f, g, g \circ f$ et $f \circ g$.

1)
$$f(x) = 3x - 1$$
; $g(x) = 2x + 1$.

2)
$$f(x) = x^2$$
; $g(x) = 2x - 1$.

3)
$$f(x) = 2x + 3$$
; $g(x) = \frac{1}{x}$.

4)
$$f(x) = \frac{1}{x+1}$$
; $g(x) = 3x$.

5)
$$f(x) = \sqrt{x^2 + x}$$
; $g(x) = \frac{1}{x} + 1$.

Exercice 7:

Décomposition d'une fonction

Pour les cas suivants, démontrer que la fonction f est la composée de fonctions de référence. On posera $f = h \circ g$.

1)
$$f(x) = \frac{1}{3x - 1}$$

5)
$$f(x) = (x+3)^2$$

$$2) \ f(x) = \sqrt{x+3}$$

6)
$$f(x) = 2x^2 - 1$$

3)
$$f(x) = 2\sqrt{x} + 4$$

7)
$$f(x) = 3 \sin x + 2$$

4)
$$f(x) = \frac{5}{x} - 1$$

$$8) f(x) = \sin(3x+2)$$

Exercice B:

f et g sont les fonctions définies par :

$$f(x) = \frac{x+3}{x+1} \qquad g(x) = \frac{x}{x+2}$$

On pose $h = g \circ f$.

- 1) Trouver l'ensemble de définition de h et calculer explicitment h(x).
- 2) La fonction k est définie par $k(x) = \frac{x+3}{3x+5}$. Les fonctions h et k sont-elles égales ?

Exercice 9:

Sens de variation

En écrivant f comme la composée de deux fonctions usuelles, en déduire les variation de f sur l'intervalle I donné. On posera $f = h \circ g$.

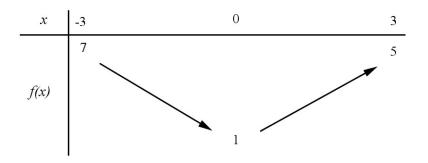
1)
$$f(x) = \sqrt{2x+1}$$
 $I = \left[-\frac{1}{2}; +\infty \right[$

2)
$$f(x) = -\frac{1}{x+1}$$
 $I =]-1; +\infty[$

3)
$$f(x) = \frac{1}{x^2 + 1}$$
 $I =]-\infty; 0[$

Exercice 10:

Le tableau de variation suivant est celui d'une fonction f définie sur [-3;3]



On définit les fonctions g et h par :

$$g(x) = -2x + 1$$
 et $h(x) = \sqrt{x}$

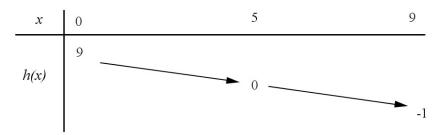
Déterminer les variations puis dresser le tableau de variations des fonctions suivantes :

a)
$$g \circ f$$

b)
$$h \circ f$$

Exercice 11:

h est une fonction dont le tableau de variations est donné ci-dessous :



f et g sont les fonctions définies par :

$$f(x) = \sqrt{x}$$

$$g(x) = x^2$$

On note $u = f \circ h$ et $v = g \circ h$

Dire si les affirmations suivantes sont vraies ou fausses en justifiant votre réponse.

- a) u est définie sur [0; 9]
- b) u est décroissante sur [0; 5]
- c) u(x) appartient à l'intervalle $[0; \sqrt{5}]$
- d) v est définie sur [0; 9]
- e) v est décroissante sur [0, 9]