Notion de barycentre

Table des matières

1				
	1.1	Définition	2	
	1.2	Propriétés	2	
	1.3	Réduction	3	
2	Barycentre de trois points			
	2.1	Définition	5	
	2.2	Associativité	5	
	2.3	Réduction	6	
3	Barycentre de <i>n</i> points			
	3.1	Définition	8	
	3.2	Associativité	8	
	3.3	Réduction	8	
4		tre d'inertie d'une plaque homogène	9	
	4.1	Principes utilisés par les physiciens	10	
		Application		

Barycentre de deux points 1

1.1 **Définition**

Le barycentre renvoie à la notion de centre d'inertie ou de gravité en physique.

Définition 1: On appelle barycentre de deux points A et B associés aux coefficients respectifs α et β , le point G tel que :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$$
 avec $\alpha + \beta \neq 0$

On note alors G barycentre des points pondérés (A, α) et (B, β)

Démonstration: Montrons qu'un tel point existe et est unique. Il s'agit alors de pouvoir placer ce point. Exprimons le point G a l'aide du vecteur AB avec la relation de Chasles:

$$\alpha\overrightarrow{GA} + \beta\overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow \alpha\overrightarrow{GA} + \beta(\overrightarrow{GA} + \overrightarrow{AB}) = \overrightarrow{0} \Leftrightarrow \alpha\overrightarrow{GA} + \beta\overrightarrow{GA} + \beta\overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow (\alpha + \beta)\overrightarrow{GA} = -\beta\overrightarrow{AB} \Leftrightarrow -(\alpha + \beta)\overrightarrow{AG} = -\beta\overrightarrow{AB} \Leftrightarrow \overrightarrow{AG} = \frac{\beta}{\alpha + \beta}\overrightarrow{AB}$$

1.2 **Propriétés**

1 : Si G est le barycentre des points pondérés (A, α) et (B, β) , alors :

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$$

Si $\alpha = \beta$, G est l'**isobarycentre** des points A et B, milieu de [AB].

Exemple: A et B étant donnés, placer les barycentres G₁ et G₂ des points pondérés respectifs (A, 3), (B, 1) et (A, -1), (B, 3).

 G_1 barycentre de (A, 2), (B, 1)

 G_2 barycentre de (A, -1), (B, 3)

$$\overrightarrow{AG_1} = \frac{1}{2+1} \overrightarrow{AB} = \frac{1}{3} \overrightarrow{AB}$$

$$\overrightarrow{AG_1} = \frac{1}{2+1} \overrightarrow{AB} = \frac{1}{3} \overrightarrow{AB}$$
 $\overrightarrow{AG}_2 = \frac{3}{-1+3} \overrightarrow{AB} = \frac{3}{2} \overrightarrow{AB}$

On peut alors placer les deux point G_1 et G_2 :

Propriété 2 : Homogénéité du barycentre.

Si G est le barycentre de (A, α) et (B, β) alors G est aussi le barycentre de $(A, k\alpha)$ et $(B, k\beta)$ lorsque k est un réel non nul.

Cela découle de la définition :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow k\alpha \overrightarrow{GA} + k\beta \overrightarrow{GB} = \overrightarrow{0} \text{ avec } k \neq 0$$

Exemple: Barycentre de $\left(A, \frac{1}{10}\right)$ et $\left(B, \frac{1}{5}\right) \Leftrightarrow$ Barycentre (A, 1) et (B, 2).

<u>Propriété</u> 3 : Le barycentre de deux point A et B, se situe sur la droite (AB). Réciproquement si trois points sont alignés, alors l'un est le barycentre des deux autres.

Exemple: Soit les trois alignés A, B et C alignés comme sur la figure ci-dessous. Montrer que C est le barycentre de (A, α) et (B, β) .

D'après la figure on a : $\overrightarrow{CA} = -2\overrightarrow{CB} \Leftrightarrow \overrightarrow{CA} + 2\overrightarrow{CB} = \overrightarrow{0}$ C est alors le barycentre de (A, 1) et (B, 2)

1.3 Réduction

Théorème 1: Formule de réduction.

Si G est le barycentre de (A, α) et (B, β) alors pour tout point M du plan, on a :

$$\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$$

Démonstration: en appliquant la relation de Chasles:

$$\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = \alpha (\overrightarrow{MG} + \overrightarrow{GA}) + \beta (\overrightarrow{MG} + \overrightarrow{GB})$$

$$= \alpha \overrightarrow{MG} + \alpha \overrightarrow{GA} + \beta \overrightarrow{MG} + \beta \overrightarrow{GA}$$

$$= (\alpha + \beta) \overrightarrow{MG} + \alpha \overrightarrow{GA} + \beta \overrightarrow{GB}$$

Or G est le barycentre de (A,α) et (B,β) donc $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$ on a alors $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$

Remarque: Cette formule de réduction permet de déterminer les lignes de niveau c'est à dire de déterminer puis tracer l'ensemble des points M qui vérifient une relation vectorielle.

Exemple: [AB] est un segment de longueur 5 cm. Déterminer l'ensemble Γ des point M qui vérifient la relation (R):

$$||2\overrightarrow{MA} + 3\overrightarrow{MB}|| = 10$$

On pose G barycentre de (A, 2) et (B, 3), d'après la formule de réduction, on a :

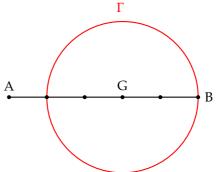
$$2\overrightarrow{MA} + 3\overrightarrow{MB} = 5\overrightarrow{MG}$$

La relation (R) devient : $||5\overrightarrow{MG}|| = 10 \Leftrightarrow MG = 2$

L'ensemble Γ est donc le cercle de centre G est de rayon 2.

Pour tracer Γ , on trace d'abord G qui vérifie : $\overrightarrow{AG} = \frac{3}{5}\overrightarrow{AB}$

On trace ensuite le cercle Γ en remarquant qu'il passe par B.



<u>Propriété</u> **4** : Si G est le barycentre de (A, α) et (B, β) , alors les coordonnées du point G dans le repère $(O, \vec{\imath}, \vec{\jmath})$ vérifient :

$$\overrightarrow{OG} = \frac{\alpha}{\alpha + \beta} \overrightarrow{OA} + \frac{\beta}{\alpha + \beta} \overrightarrow{OB}$$

Remarque : Cette formule dépend directement de la formule de réduction en prenant pour le point M le point origine O.

Exemple: On donne les point A(1;3) et B(2;1). Déterminer les coordonnées des point M, barycentre de (A,-1) et (B,3) et N, barycentre de (A,2) et (B,-1) puis placer les point A, B, M et N.

D'après la formule sur les coordonnées du barycentre.

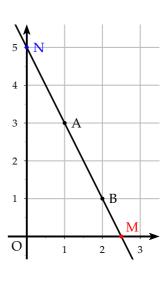
$$\overrightarrow{OM} = \frac{-1}{-1+3}\overrightarrow{OA} + \frac{3}{-1+3}\overrightarrow{OB} = -\frac{1}{2}\overrightarrow{OA} + \frac{3}{2}\overrightarrow{OB}$$

$$\overrightarrow{ON} = \frac{2}{2-1} \overrightarrow{OA} + \frac{-1}{2-1} \overrightarrow{OB} = 2 \overrightarrow{OA} - \overrightarrow{OB}$$

On obtient les coordonnées des point M et N

$$\begin{cases} x_{M} = -\frac{1}{2} \times 1 + \frac{3}{2} \times 2 = \frac{5}{2} \\ y_{M} = -\frac{1}{2} \times 3 + \frac{3}{2} \times 1 = 0 \end{cases}$$

$$\begin{cases} x_{N} = 2 \times 1 - 2 = 0\\ cly_{N} = 2 \times 3 - 1 = 5 \end{cases}$$



2 Barycentre de trois points

2.1 Définition

Définition 2 : On appelle barycentre des points pondérés (A, α) , (B, β) et (C, γ) , le point G qui vérifie :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$
 avec $\alpha + \beta + \gamma \neq 0$

• $\alpha = \beta = \gamma$, G isobarycentre des points A, B, C, centre de gravité de ABC.

Démonstration: Montrons qu'un tel point existe et est unique. Exprimons le point G a l'aide du vecteur \overrightarrow{AB} et \overrightarrow{AC} avec la relation de Chasles :

$$\alpha\overrightarrow{GA} + \beta\overrightarrow{GB} + \gamma\overrightarrow{GA} = \overrightarrow{0} \iff \alpha\overrightarrow{GA} + \beta(\overrightarrow{GA} + \overrightarrow{AB}) + \gamma(\overrightarrow{GA} + \overrightarrow{AC}) = \overrightarrow{0}$$

$$\alpha\overrightarrow{GA} + \beta\overrightarrow{GA} + \gamma\overrightarrow{GA} + \beta\overrightarrow{AB} + \gamma\overrightarrow{AC} = \overrightarrow{0} \iff (\alpha + \beta + \gamma)\overrightarrow{GA} = -\beta\overrightarrow{AB} - \gamma\overrightarrow{AC}$$

$$-(\alpha + \beta + \gamma)\overrightarrow{AG} = -\beta\overrightarrow{AB} - \gamma\overrightarrow{AC} \stackrel{\alpha + \beta + \gamma \neq 0}{\iff} \overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma}\overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma}\overrightarrow{AC}$$

On peut alors placer le point G.

2.2 Associativité

Théorème 2 : Théorème d'associativité.

Si G est le barycentre de (A, α) , (B, β) et (C, γ) et si H est le barycentre de (A, α) et (B, β) avec $\alpha + \beta \neq 0$ alors G est le barycentre de $(H, \alpha + \beta)$ et (C, γ) .

Démonstration: G est le barycentre de (A, α) , (B, β) et (C, γ) donc :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$

$$\alpha (\overrightarrow{GH} + \overrightarrow{HG}) + \beta (\overrightarrow{GH} + \overrightarrow{HB}) + \gamma \overrightarrow{GC} = \overrightarrow{0}$$

$$(\alpha + \beta) \overrightarrow{GH} + \alpha \overrightarrow{HA} + \beta \overrightarrow{HB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$

$$(\alpha + \beta) \overrightarrow{GH} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$

$$(\alpha + \beta) \overrightarrow{GH} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$

G est bien le barycentre de $(H, \alpha + \beta)$ et (C, γ) .

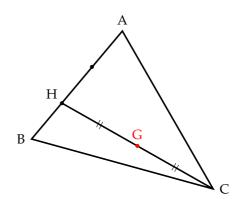
Remarque: Ce théorème permet de placer le barycentre de trois points en plaçant les barycentres de deux points l'un après l'autre.

Exemple: Soit un triangle ABC. Placer le barycentre G de (A,1), (B,2) et (C,3).

méthode 1 : Soit H le barycentre de (A, 1) et (B, 2), on a alors : $\overrightarrow{AH} = \frac{2}{3} \overrightarrow{AB}$.

PREMIÈRE SPÉCIALITÉ

D'après le théorème d'associativité, G est le barycentre de (H,3) et (C,3). G est alors l'isobarycentre de H et de C, donc G est le milieu de [HC].

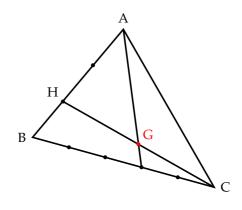


méthode 2 : Soit H et I barycentres respectifs de (A, 1), (B, 2) et (B, 2), (C, 3).

D'après le théorème d'associativité :

- G est le barycentre de (H, 3) et (C, 3) donc H, G et C sont alignés.
- G est le barycentre de (A, 1) et (I, 5), donc les points A, G et I sont alignés.
- G est donc l'intersection des droites (HC) et (AI). Il suffit alors de placer les points H et I.

$$\overrightarrow{AH} = \frac{2}{3} \overrightarrow{AB}$$
 et $\overrightarrow{BI} = \frac{3}{5} \overrightarrow{BC}$



2.3 Réduction

Théorème 3 : Formule de réduction et coordonnées de G :

Si G est le barycentre de (A, α) , (B, β) et (C, γ) , alors pour tout point M du plan on a :

$$\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC} = (\alpha + \beta + \gamma) \overrightarrow{MG}$$

Les coordonnées de G dans le repère $(O, \vec{\imath}, \vec{\jmath})$ vérifient :

$$\overrightarrow{OG} = \frac{\alpha}{\alpha + \beta + \gamma} \overrightarrow{OA} + \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{OB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{OC}$$

Démonstration: Généralisation des formules pour le barycentre de 2 points.

Exemples:

1) Soit ABC un triangle rectangle isocèle en A tel que AB = 4 cm. Déterminer et tracer Γ , l'ensemble des points M du plan tels que :

$$||-\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}||=4$$

On réduit l'expression de gauche en introduisant le point G barycentre des points (A, 1), (B,-1) et (C, 2), on a alors grâce à la formule de réduction :

$$-\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = (-1+1+2)\overrightarrow{MG} = 2\overrightarrow{MG}$$

L'ensemble des points M revient à : $||2\overrightarrow{MG}|| = 4 \Leftrightarrow MG = 2$

L'ensemble Γ est donc le cercle de centre G et de rayon 2 cm.

Pour tracer Γ , il faut placer G puis déterminer le cercle.

Pour placer G, on utilise le théorème d'associativité. On ne peut prendre comme barycentre intermédiaire les points A et B car la somme de leur coefficient est nulle. On pose alors H, barycentre des points (B, -1) et (C, 2), on a alors :

$$\overrightarrow{BH} = \frac{2}{-1+2} \overrightarrow{BC} = 2\overrightarrow{BC}$$

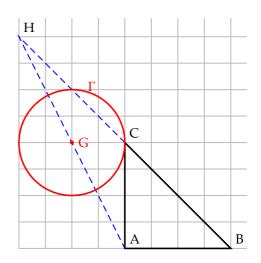
G est alors le barycentre de (A, 1) et (H,1). Donc G est le milieu de [AH]

On observe que le point C appartient au cercle solution. En effet, en remplace M par C dans la relation, on a alors:

$$||-\overrightarrow{CA} + \overrightarrow{CB} + 2\overrightarrow{CC}|| = ||\overrightarrow{AC} + \overrightarrow{CB}||$$

= $AB = 4$

La relation est vérifiée, donc le point C appartient à Γ. On pourrait aussi le montrer par le théorème des milieux.

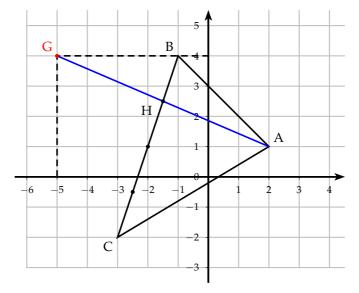


2) Dans le repère $(O, \vec{\imath}, \vec{\jmath})$, placer les points A(2; 1), B(-1; 4) et C(-3; -2). Déterminer les coordonnées de G barycentre de (A,-2), (B, 3) et (C, 1). Placer G.

On utilise la formule donnant les coordonnées de G:

$$\overrightarrow{OG} = \frac{-2}{-2+3+1} \overrightarrow{OA} + \frac{3}{-2+3+1} \overrightarrow{OB} + \frac{1}{-2+3+1} \overrightarrow{OC} = -\overrightarrow{OA} + \frac{3}{2} \overrightarrow{OB} + \frac{1}{2} \overrightarrow{OC}$$

On obtient alors G:
$$\begin{cases} x_{G} = -2 + \frac{3}{2} \times (-1) + \frac{1}{2} \times (-3) = -5 \\ y_{G} = -1 + \frac{3}{2} \times 4 + \frac{1}{2} \times -2 = 4 \end{cases}$$



3 Barycentre de *n* points

3.1 Définition

On peut généraliser la notion de barycentre à n points distincts.

Définition 3 : Soit $A_1, A_2, ..., A_n$ points.

On appelle barycentre de (A_1, α_1) , (A_2, α_2) , ..., (A_n, α_n) , le point G défini par :

$$\alpha_1 \overrightarrow{GA_1} + \alpha_2 \overrightarrow{GA_2} + \dots + \alpha_n \overrightarrow{GA_n} = \overrightarrow{0}$$
 avec $\alpha_1 + \alpha_2 + \dots + \alpha_n \neq 0$

ou avec le signe somme
$$(\Sigma)$$
: $\sum_{i=1}^{n} \alpha_i \overrightarrow{GA_i} = \overrightarrow{0}$ avec $\sum_{i=1}^{n} \alpha_i \neq 0$

3.2 Associativité

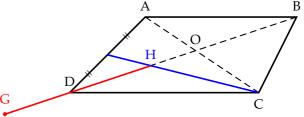
<u>Théorème</u> +: Pour trouver le barycentre de n points, on peut remplacer p points, pris parmi les n points par leur barycentre + (s'il existe) affecté de la somme de leurs coefficients.

Exemple: ABCD est un parallélogramme. Déterminer et placer le barycentre des points (A, 2), (B, -3), (C, 2) et (D, 2).

Comme les points A, C et D ont le même coefficient, on introduit le point H le barycentre de (A, 2), (C, 2) et (D, 2). H est alors le centre de gravité du triangle ACD (intersection des médianes).

D'après le théorème d'associativité G est alors le barycentre des points (H,6) et (B,-3), on a alors :

$$\overrightarrow{HG} = \frac{-3}{6-3} \overrightarrow{HB} = -\overrightarrow{HB}$$



3.3 Réduction

Théorème S: Formule de réduction..

Soit G est le barycentre des points pondérés (A_1, α_1) , (A_2, α_2) , ..., (A_n, α_n) et M est un point du plan, on a :

$$\alpha_{1} \overrightarrow{MA_{1}} + \alpha_{2} \overrightarrow{MA_{2}} + \dots + \alpha_{n} \overrightarrow{MA_{n}} = (\alpha_{1} + \alpha_{2} + \dots + \alpha_{n}) \overrightarrow{MG}$$

$$\sum_{i=1}^{n} \alpha_{i} \overrightarrow{MA_{i}} = \left(\sum_{i=1}^{n} \alpha_{i}\right) \overrightarrow{MG}$$

Théorème 6: Coordonnées de G.

Soit G est le barycentre des points pondérés (A_1, α_1) , (A_2, α_2) , ..., (A_n, α_n) et $(O, \vec{\imath}, \vec{\jmath})$ un repère du plan, on a :

$$\overrightarrow{OG} = \frac{1}{\sum \alpha_i} \left(\alpha_1 \overrightarrow{OA_1} + \alpha_2 \overrightarrow{OA_2} + \dots + \alpha_n \overrightarrow{OA_n} \right)$$

$$\overrightarrow{OG} = \frac{1}{\sum \alpha_i} \sum_{i=1}^n \alpha_i \overrightarrow{OA_i}$$

Exemple: ABCD est un rectangle. Déterminer et tracer l'ensemble Γ , des points M tels que :

$$||\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}|| = ||\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{MC} + \overrightarrow{MD}||$$

On réduit les deux termes de l'égalité. Pour le terme de gauche, on pose G, isobarycentre des points A, B, C, D. D'après la formule de réduction, on a alors :

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MG}$$

Pour le terme de droite, la somme des coefficients est nulle, on ne peut donc introduire un barycentre. On la réduit en utilisant la relation de Chasles :

$$\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MA} - (\overrightarrow{MA} + \overrightarrow{AB}) - (\overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{MA} + \overrightarrow{AD})$$

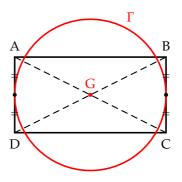
$$= -\overrightarrow{AB} - \overrightarrow{AB} - \overrightarrow{BC} + \overrightarrow{AD} \stackrel{\overrightarrow{BC}}{=} \overrightarrow{AD} - 2\overrightarrow{AB}$$

La relation devient donc : $||4\overrightarrow{MG}|| = ||-2\overrightarrow{AB}|| \iff MG = \frac{1}{2}AB$

L'ensemble Γ est donc le cercle de centre G est de rayon $\frac{1}{2}$ AB

Comme G est l'isobarycentre des points A, B, C et D, et comme ABCD est un rectangle, on vérifie aisément que G se situe au centre du rectangle.

Le cercle Γ passe par les milieux des côtés [BC] et [AD].



4 Centre d'inertie d'une plaque homogène

Une plaque homogène consiste en une surface d'épaisseur négligeable dont la masse est également répartie. Le centre d'inertie représente le centre des masses de la plaque.

4.1 Principes utilisés par les physiciens

1) Exemples de base

Le centre d'inertie de n masses ponctuelles est le barycentre des n points affectés de leur masse. Le centre d'inertie d'une tige est le milieu de cette tige. Le centre d'inertie d'une plaque triangulaire est le centre de gravité du triangle.

2) Éléments de symétrie

Si la plaque admet un centre de symétrie I, alors le centre d'inertie est en I Si la plaque admet un axe de symétrie (Δ) , alors son centre d'inertie est sur (Δ) .

3) Juxtaposition

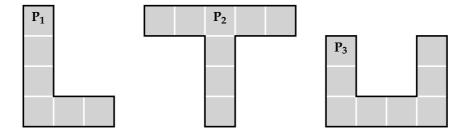
Le centre d'inertie I de la plaque, réunion des plaques P_1 et P_2 , de centres d'inertie et d'aires respectifs I_1 , a_1 et I_2 , a_2 , est le barycentre des points I_1 et I_2 affectés des coefficients respectifs a_1 et a_2 .

Les aires a_1 et a_2 peuvent être prises comme coefficients puisque, pour des plaques homogènes, les masses sont proportionnelles aux aires.

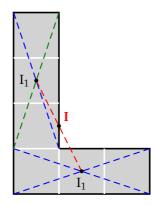
4.2 Application

4.2.1 Exercice 1

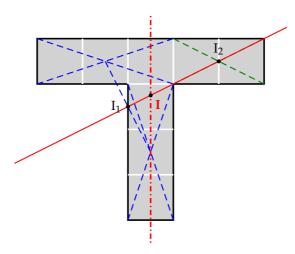
Pour chacune des plaques homogènes suivantes, construire le centre d'inertie à la règle et au compas. (Les carrés sont identiques).



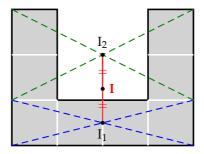
1) Pour la plaque P₁. On sépare cette plaque en deux rectangles composés de 3 carrés. Les centres d'inertie I₁ et I₂ se trouve au centre de chaque rectangle (centre de symétrie). Comme les aires de chaque rectangle sont égales, le centre d'inertie de l'ensemble de la plaque se trouve au milieu du segment [I₁I₂]. On obtient alors :



2) Pour la plaque P_2 . On sépare cette plaque en deux : un "L" retourné comme la plaque P_1 et un rectangle formé de deux carrés. On obtient alors deux centre I_1 et I_2 . Le centre d'inertie I se trouve sur la droite (I_1I_2) . De plus la figure admet un centre de symétrie (Δ) , donc I se trouve à l'intersection des deux droites. On obtient alors :



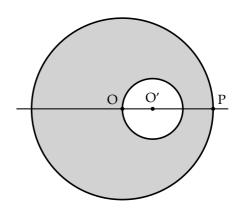
3) Pour la plaque P_3 . On sépare cette plaque d'une part en un rectangle de 4 carrés et les quatre carré qui reste. Chaque sous-plaque admet un centre de symétrie, I_1 et I_2 . Comme les aires sont identiques le centre d'inertie I se trouve donc au milieu de $[I_1I_2]$. On obtient alors :



4.2.2 Exercice 2

Une rondelle a la forme d'un disque évidé suivant le schéma ci-contre pour lequel OP = 3OO'.

- 1) Trouver la position du centre d'inertie I de la rondelle évidée.
- 2) On note *M* la masse de la rondelle évidée. Quelle masse *m* doit-on placer en P afin que l'ensemble constitué de la rondelle et du point "*massique*" P ait O pour centre d'inertie?

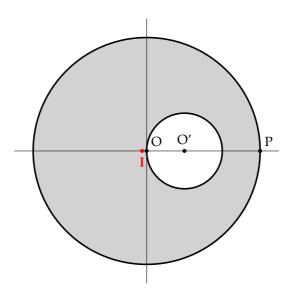


1) Pour déterminer le centre d'inertie, on considérera la rondelle évidée comme la superposition d'un disque plein de coefficient $\pi \times \mathrm{OP}^2$ et d'un disque plein associé au coefficient négatif $-\pi \times \mathrm{OO'}^2$. I est donc le barycentre de $(\mathrm{O}, \pi \times \mathrm{OP}^2)$ et $(\mathrm{O'}, -\pi \times \mathrm{OO'}^2)$. On obtient donc :

$$\overrightarrow{OI} = \frac{-\pi \times OO'^2}{\pi \times OP^2 - \pi \times OO'^2} \overrightarrow{OO'} = \frac{-OO'^2}{OP^2 - OO'^2} \overrightarrow{OO'}$$

Comme OP = 3OO', en remplaçant OP, on a :

$$\overrightarrow{OI} = \frac{-\overrightarrow{OO'^2}}{9\overrightarrow{OO'^2} - \overrightarrow{OO'^2}} \overrightarrow{OO'} = -\frac{1}{8} \overrightarrow{OO'}$$



2) Si O représente le centre d'inertie de la rondelle évidée et de la masse en P, alors O est le barycentre de (I,*M*) et (P,*m*). On a donc :

$$\overrightarrow{IO} = \frac{m}{M+m} \overrightarrow{IP}$$

Or
$$\overrightarrow{OI} = -\frac{1}{8} \overrightarrow{OO'}$$
, donc $\frac{1}{8} \overrightarrow{OO'} = \frac{m}{M+m} \overrightarrow{IP}$

En multipliant par $8 \times (M+m)$, on a :

$$(M+m)\overrightarrow{OO'} = 8m\overrightarrow{IP} \Leftrightarrow (M+m)\overrightarrow{OO'} = 8m(\overrightarrow{IO} + \overrightarrow{OP})$$

En remplaçant \overrightarrow{IO} et \overrightarrow{OP} en fonction de $\overrightarrow{OO'}$

$$(M+m)\overrightarrow{OO'} = 8m\left(\frac{1}{8}\overrightarrow{OO'} + 3\overrightarrow{OO'}\right)$$

$$M\overrightarrow{OO'} + m\overrightarrow{OO'} = m\overrightarrow{OO'} + 24m\overrightarrow{OO'}$$

$$M\overrightarrow{OO'} = 24m\overrightarrow{OO'}$$

On en déduit alors : $m = \frac{1}{24}M$