Contrôle de mathématiques

Lundi 25 mars 2024

Exercice 1

QCM (5 points)

Pour chacune des questions, une seule des quatre propositions est correcte. Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

- 1) Une urne contient 6 boules indiscernables au toucher : 2 vertes, 3 rouges et 1 blanche. On tire au hasard deux boules simultanément et on appelle A l'événement « obtenir deux boules de même couleur ». La probabilité p(A) est égale à :
 - **a**) $\frac{2}{15}$
- **b**) $\frac{3}{15}$
- c) $\frac{4}{15}$
- **d**) $\frac{1}{5}$
- 2) Soit A et B deux événements d'une expérience aléatoire tels que :

$$p(\overline{A}) = 0,7$$
 , $p(B) = 0,4$ et $p(A \cup B) = 0,5$

La probabilité de l'intersection des événements A et B est :

- **a**) 0,9
- **b**) 0.2
- **c)** 0.1
- **d**) 0.08
- 3) Soit A et B deux événements d'une expérience aléatoire tels que :

$$p(A) = \frac{1}{3} , p_A(B) = \frac{1}{4} \text{ et } p_{\overline{A}}(\overline{B}) = \frac{3}{5}$$
a) $p(B) = \frac{1}{20}$ **b)** $p(B) = \frac{17}{60}$ **c)** $p(B) = \frac{29}{60}$ **d)** $p(B) = \frac{7}{20}$

4) On lance 2 fois une pièce bien équilibrée de façon identique et indépendante. La pièce ne peut tomber que sur Face ou sur Pile. Si le joueur obtient 2 Faces, il perd 5 €, s'il obtient exactement une Face, il gagne 2 €, s'il obtient 2 Piles il gagne 4 €.

On note X la variable aléatoire associée au gain algébrique du joueur en euros.

- **a)** E(X) = 0.75
- **b**) E(X) = 0.67 **c**) E(X) = 1
- **d)** E(X) = 0.25
- 5) Soit la loi de probabilité de la variable aléatoire *X* donnée par le tableau ci-dessous :

1	-5				
p(X = k)	0,71	0,03	0,01	0,05	0, 2

- **a)** E(X) = 15 **b)** E(X) = 0.2 **c)** E(X) = 7.55 **d)** E(X) = 17

Exercice 2

Monstre (5 points)

Un jeu consiste à combattre en duel soit un monstre A, soit un monstre B.

On a 4 chances sur 5 d'affronter le monstre A.

Le joueur gagne contre le monstre A dans 30 % des cas, et gagne contre le monstre B dans 25 % des cas.

Le joueur lance une partie. On considère les événements :

- A : « Le joueur affronte le monstre A. »
- B : « Le joueur affronte le monstre B. »
- V : « Le joueur est victorieux. »
- 1) Construire un arbre de probabilité.
- 2) Déterminer $p_B(\overline{V})$ et interpréter le résultat dans le contexte de l'énoncé.
- 3) Montrer que $p(B \cap V) = \frac{1}{20}$.
- 4) Calculer p(V).
- 5) Calculer la probabilité d'avoir combattu le monstre B sachant que le joueur est victorieux.

Exercice 3

Alcootest (5 points)

Un laboratoire a mis au point un alcootest. On sait 2 % des personnes contrôlées par la police sont en état d'ébriété. Les premiers essais ont conduit aux résultats suivants :

- Lorsqu'une personne est en état d'ébriété, 95 fois sur 100 l'alcootest est positif;
- Lorsqu'une personne n'est pas un état d'ébriété, 96 fois sur 100, l'alcootest est négatif.

On interroge une personne ayant participé aux essais. On note :

E : « la personne est en état d'ébriété » et T : « le test est positif »

- 1) Traduire les données de l'énoncé à l'aide des notations données puis construire l'arbre de probabilité.
- 2) Calculer la probabilité qu'une personne soit en état d'ébriété et que le test soit positif.
- 3) Montrer que p(T) = 0,0582.
- 4) Déduire la probabilité qu'une personne soit en état d'ébriété lorsque le test est positif. Interpréter ce résultat dans le contexte de l'énoncé.

Exercice 4

Conditionnement en sachets

(5 points)

Une entreprise conditionne des pièces mécaniques sous forme de sachets. Le service qualité a relevé deux types de défauts sur les 12 000 sachets produits chaque jour.

- 360 sachets présentent une erreur d'étiquetage. Ce défaut est noté D₁.
- 600 sachets ont été déchirés. Ce défaut est noté D₂.
- 120 sachets présentent simultanément les deux défauts D₁ et D₂.
- 1) On choisit au hasard un sachet parmi les 12 000 sachets.
 - a) Montrer que la probabilité que le sachet présente uniquement le défaut D₁ est 0,02.
 - b) Déterminer la probabilité que le sachet présente uniquement le défaut D₂.
 - c) Déterminer la probabilité que le sachet ne présente aucun défaut.
- 2) Pour l'entreprise, le coût de revient d'un sachet sans défaut est $2,45 \in$, celui d'un sachet ayant seulement le défaut D₁ est $4,05 \in$, celui d'un sachet ayant seulement le défaut D₂ est $6,45 \in$ et celui d'un sachet ayant les deux défauts est $8,05 \in$.

On choisit un sachet au hasard et on appelle *X* la variable aléatoire qui associe au sachet, son coût de revient en euros.

- a) Donner la loi de probabilité de X.
- b) Calculer l'espérance de E(X) et interpréter ce résultat dans le contexte de l'énoncé.