LA fonction exponentielle

Opération sur la fonction exponentielle

Exercice 1

Simplifier les écritures suivantes :

a)
$$(e^x)^3 e^{-2x}$$

b)
$$\frac{e^{x-1}}{e^{x+2}}$$

c)
$$\frac{e^x + e^{-x}}{e^x}$$
 d) $e^{-x}e^2$

d)
$$e^{-x}e^2$$

e)
$$\frac{e^{3x}}{(e^{-x})^2 \times e^x}$$
 f) $\frac{e^x e^y}{e^{x-y}}$

f)
$$\frac{e^x e^y}{e^{x-y}}$$

Exercice 2

Pour tout *x*, on pose : $g(x) = \frac{e^x + e^{-x}}{2}$ et $h(x) = \frac{e^x - e^{-x}}{2}$

a) Démontrer que $[g(x)]^2 - [h(x)]^2 = 1$

b) Démontrer que $g(2x) = 2[g(x)]^2 - 1$ et que $h(2x) = 2g(x) \times h(x)$.

c) Comparer ces relations avec les fonctions sinus et cosinus.

Équations et inéquations

Exercice 3

Résoudre dans $\mathbb R$ les équations suivantes :

1)
$$e^{3-x} = 1$$

$$2) \ e^{2x^2+3} = e^{7x}$$

1)
$$e^{3-x} = 1$$
 2) $e^{2x^2+3} = e^{7x}$ 3) $2e^{-x} = \frac{1}{e^x + 2}$ 4) $e^{x^3} = e^8$

4)
$$e^{x^3} = e^8$$

5)
$$e^{x+1} = e^{\frac{1}{2}}$$

6)
$$e^{\sin x} = e^{\frac{1}{2}}$$

5)
$$e^{x+1} = e^{\frac{1}{x}}$$
 6) $e^{\sin x} = e^{\frac{1}{2}}$ 7) $e^{x^2} = (e^2)^3 e^{-x}$ 8) $e^{x^2} = e^{x-2}$

8)
$$e^{x^2} = e^{x-2}$$

Exercice 4

Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$e^{x^2} \le \frac{1}{e^2}$$

2)
$$(e^x)^3 \le e^{x+6}$$

$$3) e^x \leqslant \frac{1}{e^x}$$

4)
$$(e^x - 1)e^x > e^x - 1$$
 5) $e^{2x} < e^x$

5)
$$e^{2x} < e^x$$

6)
$$3(e^x)^2 + e^x - 4 < 0$$

Dérivées

Exercice 5

Déterminer les dérivées des fonctions suivantes :

1)
$$f(x) = (x^2 - 2x)e^x$$
 2) $f(x) = \frac{1}{x}e^x$

$$2) f(x) = \frac{1}{x}e^x$$

3)
$$f(x) = \frac{e^x - 1}{2e^x + 1}$$

$$4) \ f(x) = \frac{e^x}{e^x - x}$$

5)
$$f(x) = x^2 - 2(x - 1)e^x$$

Calcul de limites

Exercice 6

Déterminer les limites des fonction f suivantes à l'endroit indiqué.

1)
$$f(x) = \frac{e^x - 1}{2x}$$
 en 0, $+\infty$ et $-\infty$

5)
$$f(x) = 2x - 1 + e^{-x}$$
 en $+\infty$ et $-\infty$

2)
$$f(x) = 2xe^{-x} \quad \text{en } +\infty$$

6)
$$f(x) = \frac{1}{x}(e^{2x} - 1)$$
 en 0 et $+\infty$

3)
$$f(x) = \frac{e^x - 1}{2e^x + 1}$$
 en $+\infty$ et $-\infty$

7)
$$f(x) = x + 2 + xe^x$$
 en $-\infty$

4)
$$f(x) = e^{2x} - e^x + 1$$
 en $+\infty$ et $-\infty$

Étude d'une fonction

Exercice 7

f est la fonction définie sur \mathbb{R} par : $f(x) = \frac{2e^x - 3}{e^x + 1}$

- 1) Pourquoi les droite d et Δ d'équation respectives y=2 et y=-3 sont-elles asymptotes à \mathscr{C}_f ?
- 2) Calculer f'(x) puis étudier les variations de f.
- 3) Tracer d, Δ et \mathscr{C}_f
- 4) La courbe semble avoir un point de symétrie. Démontrer cette conjecture.

EXERCICE 8

f est la fonction définie sur \mathbb{R} par : $f(x) = (3 - x)e^x$. Justifier les affirmations suivantes :

1) Le tableau de variations de f est :

х	$-\infty$	2	+∞
f(x)	0	e^2	-∞

2) Pour tout réel m > 0 et $m \ne e^2$, l'équation f(x) = m admet soit aucune, soit deux solutions.

Exercice 9

f est la fonction définie sur \mathbb{R} par : $f(x) = e^{-x^2}$.

- 1) Calculer f(-x). Que peut-on conclure pour \mathscr{C}_f ?
- 2) Calculer les limites de f en $+\infty$ et $-\infty$.
- 3) Calculer la dérivée de f puis dresser le tableau de variation de f sur \mathbb{R} .
- 4) Tracer la courbe \mathcal{C}_f pour $x \in [-2; 2]$ dans un repère orthonormal. Unité graphique : 2 cm sur les deux axes.

Fonction e^{u}

Exercice 10

Déterminer les fonctions dérivées suivantes :

1)
$$f(x) = xe^{\frac{1}{x}}$$

3)
$$f(x) = \cos x e^{\sin x}$$

2)
$$f(x) = 2(x-1)e^{x-1}$$

4)
$$f(x) = e^{\frac{1+x}{1+x^2}}$$

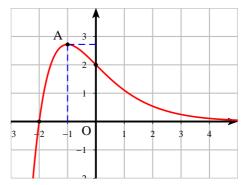
Exercice 11

La courbe ci-contre représente une fonction f définie sur \mathbb{R} par :

$$f(x) = (ax + b)e^{-x}$$

où a et b sont deux réels.

- 1) À l'aide des renseignements portés sur la figure, déterminer *a* et *b*.
- 2) Calculer f'(x). En déduire les coordonnées du point A maximum de f

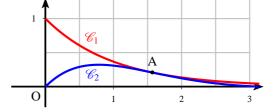


Exercice 12

Dans un repère orthogonal, on a tracé cicontre les courbe \mathcal{C}_1 et \mathcal{C}_2 représentant les fonctions f_1 et f_2 définies sur $[0; \pi]$ par :

$$f_1(x) = e^{-x}$$
 et $f_2(x) = \sin x e^{-x}$

Démontrer que \mathcal{C}_1 et \mathcal{C}_2 sont tangentes en un point A.



Application en astronomie

Exercice 13

L'intensité $I(\lambda)$ du rayonnement d'une étoile pour une longueur d'onde λ ($\lambda > 0$), est donnée par : $I(\lambda) = \frac{1}{\lambda^5} e^{-\frac{K}{\lambda}}$ où K est une constante positive qui dépend de l'étoile.

Démontrer que l'intensité $I(\lambda)$ rayonnée par l'étoile est maximale pour une valeur λ_0 de λ que l'on déterminera en fonction de K. En déduire $I(\lambda_0)$.

Exercices de BAC

Exercice 14

Étude d'une fonction

f est la fonction définie sur $I = [0; +\infty[$ par : $f(x) = \frac{10x}{e^x + 1}$

1) Démontrer que pour tout réel x de I, on a : $f'(x) = \frac{10}{(e^x + 1)^2} g(x)$ où g est une fonction définie sur I que l'on déterminera.

- 2) Démontrer qu'il existe un unique réel α de I tel que $g(\alpha) = 0$. Donner de α un encadrement d'amplitude 10^{-2} .
- 3) En déduire le tableau de variation de f et démontrer que $f(\alpha) = 10(\alpha 1)$.
- 4) Construire la courbe $\mathscr C$ de f dans un repère orthonormal pour $x \in [0; 8]$. Unité graphique 1 cm.

Exercice 15

Amérique du sud novembre 2013

Partie A

Soit f la fonction définie sur \mathbb{R} par : $f(x) = xe^{1-x}$

- 1) Vérifier que pour tout réel x, $f(x) = e \times \frac{x}{e^x}$.
- 2) Déterminer la limite de la fonction f en $-\infty$.
- 3) Déterminer la limite de la fonction f en $+\infty$. Interpréter graphiquement cette limite.
- 4) Déterminer la dérivée de la fonction f.
- 5) Étudier les variations de la fonction f sur \mathbb{R} puis dresser le tableau de variation.

Partie B

Pour tout entier naturel n non nul, on considère les fonctions g_n et h_n définies sur \mathbb{R} par :

$$g_n(x) = 1 + x + x^2 + \dots + x^n$$
 et $h_n(x) = 1 + 2x + \dots + nx^{n-1}$.

- 1) Vérifier que, pour tout réel x: $(1-x)g_n(x) = 1-x^{n+1}$. On obtient alors, pour tout réel $x \ne 1$: $g_n(x) = \frac{1-x^{n+1}}{1-x}$.
- 2) Comparer les fonctions h_n et g'_n , g'_n étant la dérivée de la fonction g_n . En déduire que, pour tout réel $x \neq 1$: $h_n(x) = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2}$.
- 3) Soit $S_n = f(1) + f(2) + ... + f(n)$, f étant la fonction définie dans la partie A. En utilisant les résultats de la **partie B**, déterminer une expression de S_n puis sa limite quand n tend vers $+\infty$. Vérifier cette limite par un algorithme.

Exercice 16

Pondichéry avril 2013 modifié

Partie 1

On s'intéresse à l'évolution de la hauteur d'un plant de maïs en fonction du temps. Le graphique ci-dessous représente cette évolution. La hauteur est en mètres et le temps en jours.

On décide de modéliser cette croissance par une fonction logistique du type :

$$h(t) = \frac{a}{1 + be^{-0.04t}}$$

où a et b sont des constantes réelles positives, t est la variable temps exprimée en jours et h(t) désigne la hauteur du plant, exprimée en mètres.

On sait qu'initialement, pour t = 0, le plant mesure 0, 1 m et que sa hauteur tend vers une hauteur limite de 2 m.

Déterminer les constantes a et b afin que la fonction h corresponde à la croissance du plant de maïs étudié.

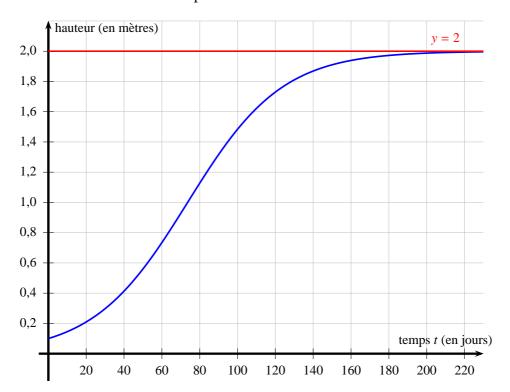
Partie 2

On considère désormais que la croissance du plant de maïs est donnée par la fonction f définie sur [0; 250] par : $f(t) = \frac{2}{1 + 19e^{-0.04t}}$

- 1) Déterminer f'(t) en fonction de t (f' désignant la fonction dérivée de la fonction f). En déduire les variations de la fonction f sur l'intervalle [0; 250].
- 2) A l'aide d'un algorithme, donner, au jour près, le temps nécessaire pour que le plant de maïs atteigne une hauteur supérieure à 1,5 m.
- 3) On s'intéresse à la vitesse de croissance du plant de maïs ; elle est donnée par la fonction dérivée de la fonction *f* .

La vitesse de croissance est maximale pour une valeur de t.

En utilisant le graphique donné ci-dessous, déterminer une valeur approchée de celleci. Estimer alors la hauteur du plant.



Exercice 17

Asie juin 2014

Une chaîne, suspendue entre deux points d'accroche de même hauteur peut être modélisée par la représentation graphique d'une fonction g définie sur [-1; 1] par

$$g(x) = \frac{1}{2a} \left(e^{ax} + e^{-ax} \right)$$

où a est un paramètre réel strictement positif. On ne cherchera pas à étudier la fonction g.

On montre en sciences physiques que, pour que cette chaîne ait une tension minimale aux extrémités, il faut et il suffit que le réel a soit une solution strictement positive de l'équation

(E):
$$(x-1)e^{2x} - 1 - x = 0$$

Dans la suite, on définit sur $[0; +\infty[$ la fonction f par $f(x) = (x-1)e^{2x} - 1 - x$

- 1) Déterminer la fonction dérivée de la fonction f. Vérifier que f'(0) = -2 et que $\lim_{x \to +\infty} f'(x) = +\infty$.
- 2) On note f'' la fonction dérivée de f'. Vérifier que, pour tout réel $x \ge 0$, $f''(x) = 4xe^{2x}$.
- 3) Montrer que, sur l'intervalle $[0; +\infty[$ la fonction f' s'annule pour une unique valeur, notée x_0 . À l'aide de l'algorithme par dichotomie donner un encadrement au centième de x_0 . On pourra calculer f'(1)
- 4) a) Déterminer le sens de variation de la fonction f sur l'intervalle $[0; +\infty[$, puis dresser le tableau de variation de la fonction f. Montrer que f(x) est négatif pour tout réel x appartenant à l'intervalle $[0; x_0]$.
 - b) Calculer f(2).
 En déduire que sur l'intervalle [0 ; +∞[, la fonction f s'annule pour une unique valeur. Si l'on note a cette valeur, déterminer à l'aide de la calculatrice la valeur de a arrondie au centième.

Exercice 18

f est la fonction définie sur $]0; +\infty[$ par : $f(x) = \frac{e^x - 1}{x}$

- 1) Dans un repère orthonormal, construire la courbe Γ d'équation $y = e^x$ et la droite d tangente à Γ en x = 0.
- 2) Justifier graphiquement que, pour tout réel $u: e^u \ge u + 1$
- 3) En déduire que pour tout réel $x: e^{-x} + x 1 \ge 0$ et $1 + (x 1)e^x \ge 0$
- 4) Démontrer alors que la fonction f est strictement croissante sur $]0; +\infty[$.

Exercice 19

Antilles-Guyane juin 2014

On considère la fonction f définie et dérivable sur l'ensemble \mathbb{R} des nombres réels par :

$$f(x) = x + 1 + \frac{x}{e^x}$$

On note \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$.

- 1) Soit g la fonction définie et dérivable sur l'ensemble \mathbb{R} par : $g(x) = 1 x + e^x$ Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues). En déduire le signe de g(x).
- 2) Déterminer la limite de f en $-\infty$ puis la limite de f en $+\infty$.

- 3) On appelle f' la dérivée de la fonction f sur \mathbb{R} . Démontrer que, pour tout réel x, $f'(x) = e^{-x}g(x)$
- 4) En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- 5) Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur \mathbb{R} . Démontrer que $-1 < \alpha < 0$.
- 6) a) Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe \mathscr{C} au point d'abscisse 0.
 - b) Étudier la position relative de la courbe \mathscr{C} et de la droite T.

Exercice 20

Antilles-Guyane septembre 2014

Partie A

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par : $f(x) = xe^{-x}$.

- 1) Déterminer la limite de la fonction f en $+\infty$.
- 2) Déterminer la dérivée f' de la fonction f sur $[0; +\infty[$ et en déduire le tableau de variations de f sur $[0; +\infty[$.

On donne ci-après la courbe \mathcal{C}_f représentative de la fonction f dans un repère du plan. La droite Δ d'équation y=x a aussi été tracée.

Partie B

Soit la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 1) Placer sur le graphique donné ci-après, en utilisant la courbe \mathcal{C}_f et la droite Δ , les points A_0 , A_1 et A_2 d'ordonnées nulles et d'abscisses respectives u_0 , u_1 et u_2 . Laisser les tracés explicatifs apparents.
- 2) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ u_n > 0$.
- 3) Montrer que la suite (u_n) est décroissante.
- 4) a) Montrer que la suite (u_n) est convergente vers ℓ .
 - b) Déterminer cette limite ℓ

Partie C

On considère la suite (S_n) définie pour tout entier naturel n par

$$S_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + \dots + u_n$$

Recopier puis compléter l'algorithme donné ci-contre afin qu'il calcule S_{100} . Donner alors S_{100} à 10^{-2} près

```
Variables: S, u réels
k entier

Entrées et initialisation
\cdots \to u
\cdots \to S

Traitement

pour k variant de 1 à ... faire
u \times e^{-u} \to u
\cdots \to S

fin

Sorties: Afficher ...
```

