
Révision: suites, fonctions, fonctions exponentielle et logarithme

Exercice 1

Liban 27 mai 2015

On considère la courbe \mathscr{C} d'équation $y = e^x$, tracée ci-dessous.

Pour tout réel m strictement positif, on note \mathcal{D}_m la droite d'équation y = mx.

- Dans cette question, on choisit m = e.
 Démontrer que la droite De, d'équation y = ex, est tangente à la courbe C en son point d'abscisse 1.
- 2) Conjecturer, selon les valeurs prises par le réel strictement positif m, le nombre de points d'intersection de la courbe \mathscr{C} et de la droite \mathscr{D}_m .
- 3) Démontrer cette conjecture.

EXERCICE 2

Liban 27 mai 2015

On définit la suite (u_n) de la façon suivante :

pour tout entier naturel n, $u_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1) Calculer $u_0 = \int_0^1 \frac{1}{1+x} \, dx$.
- 2) a) Démontrer que, pour tout entier naturel n, $u_{n+1} + u_n = \frac{1}{n+1}$.
 - b) En déduire la valeur exacte de u_1 .

PAUL MILAN 1 TERMINALE S

3) a) Recopier et compléter l'algorithme ci-dessous afin qu'il affiche en sortie le terme de rang n de la suite (u_n) où n est un entier naturel saisi en entrée par l'utilisateur.

b) À l'aide de cet algorithme, on a obtenu le tableau de valeurs suivant :

n	0	1	2	3	4	5	10	50	100
u_n	0,693 1	0,3069	0,193 1	0,1402	0,1098	0,0902	0,047 5	0,0099	0,0050

Quelles conjectures concernant le comportement de la suite (u_n) peut-on émettre?

- 4) a) Démontrer que la suite (u_n) est décroissante.
 - b) Démontrer que la suite (u_n) est convergente.
- 5) On appelle ℓ la limite de la suite (u_n) . Démontrer que $\ell = 0$.