Devoir à rendre pour le 7 janvier 2013

EXERCICE I

Equation 2 points

Résoudre l'équation et le système suivants :

1)
$$\ln(2x-3) + \ln(x+1) = \ln(x+9)$$

2)
$$\begin{cases} 2\ln x + \ln y = 7\\ 3\ln x - 5\ln y = 4 \end{cases}$$

Exercice II

Inéquation du 3^e degré

4 points

Pour tout réel x, on pose : $P(x) = 2x^3 + 5x^2 + x - 2$

- 1) a) Vérifier que P(-1) = 0
 - b) En déduire une factorisation de P(x)
 - c) Résoudre alors l'inéquation : $P(x) \le 0$
- 2) Utiliser les résultats précédents pour résoudre l'inéquation :

$$2\ln x + \ln(2x+5) \leqslant \ln(2-x)$$

EXERCICE III

Optimisation 8 points

Partie A

Soit *u* la fonction définie sur]0; $+\infty$ [par : $u(x) = x^2 - 2 + \ln x$

- 1) Étudier les variations de u sur]0; $+\infty[$ et préciser ses limites en 0 et en $+\infty$.
- 2) a) Montrer que l'équation u(x) = 0 admet une solution unique sur]0; $+\infty[$. On note α cette solution.
 - b) À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
- 3) Déterminer le signe de u(x) suivant les valeurs de x.
- 4) Montrer l'égalité : $\ln \alpha = 2 \alpha^2$.

Partie B

On considère la fonction f définie et dérivable sur]0; $+\infty[$ par : $f(x) = x^2 + (2 - \ln x)^2$ On note f' la fonction dérivée de f sur]0; $+\infty[$.

- 1) Exprimer, pour tout x de]0; $+\infty$ [, f'(x) en fonction de u(x).
- 2) En déduire les variations de f sur]0; $+\infty[$.

Partie C

Dans le plan rapporté à un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$, on note :

• Γ la courbe représentative de la fonction ln (logarithme népérien);

PAUL MILAN 1 TERMINALE S

- A le point de coordonnées (0; 2);
- M le point de Γ d'abscisse x appartenant à]0; $+\infty[$.
- 1) Montrer que la distance AM est donnée par AM = $\sqrt{f(x)}$.
- 2) Soit g la fonction définie sur]0; $+\infty$ [par $g(x) = \sqrt{f(x)}$.
 - a) Montrer que les fonctions f et g ont les mêmes variations sur]0; $+\infty[$.
 - b) Montrer que la distance AM est minimale en un point de Γ , noté P, dont on précisera les coordonnées.
 - c) Montrer que AP = $\alpha \sqrt{1 + \alpha^2}$.
- 3) Pour cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

 La droite (AP) est-elle perpendiculaire à la tangente à Γ en P?

EXERCICE IV

Algorithme: approximation polynomiale

4 points

L'algorithme ci-contre permet d'obtenir, pour tout nombre réel x de l'intervalle [1;2] un encadrement de $\ln x$ d'amplitude inférieure ou égale à 0,001.

1) On choisit x = 1, 5. Recopier et compléter le tableau suivant donnant les différentes étapes.

	х	t	S	s-t	n
Initialisation	0,5				3
Etape 1	0,5	0,375	0,5	0,125	3
Etape 2	0,5				
Etape 3	0,5				
Etape 4	0,5	0,4053			9

2) Avec une amplitude égale à 10^{-5} , quelle valeur de n obtiendra t-on en sortie pour la valeur x = 1, 5?

$\frac{\text{Variables}}{x, t, s, n}$

Initialisation

Lire *x*

n prend la valeur 3

Traitement

 \overline{x} prend la valeur x - 1

s prend la valeur x

t prend la valeur $x - \frac{x^2}{2}$

Tant que s - t > 0,001

s prend la valeur $t + \frac{x^n}{n}$

t prend la valeur $s - \frac{x^{n+1}}{n+1}$

n prend la valeur n + 2

Fin Tantque

Sortie

 $\overline{\text{Afficher }}t$, s et n

3) Pour un nombre x de [1,2], on a obtenu n=5 avec l'algorithme précédent. Donner un encadrement de $\ln x$ par deux fonctions polynômes f et g telles que $f(x) \le \ln x \le g(x)$

EXERCICE V

Suites 2 points

(
$$u_n$$
) est la suite définie par :
$$\begin{cases} u_0 = e^3 \\ u_{n+1} = e \sqrt{u_n} \end{cases}$$

On note (v_n) la suite définie pour tout n par : $v_n = \ln u_n - 2$.

- 1) Démontrer que la suite (v_n) est géométrique et préciser v_0 et sa raison r.
- 2) En déduire v_n , puis $\ln u_n$, en fonction de n.
- 3) a) Quelle est la limte de la suite (v_n) ?
 - b) En déduire que la suite (u_n) converge vers e^2 .