Contrôle de mathématiques

Jeudi 21 novembre 2013

Exercice 1

Continuité (2 points)

f est la fonction définie sur $[0; +\infty[$ par : $\begin{cases} f(x) = \frac{\sqrt{1+x}-1}{x} & \text{si } x > 0\\ f(0) = \frac{1}{2} \end{cases}$

- a) Rappeler la définition de la continuité d'une fonction en a
- b) f est-elle continue en 0?

Exercice 2

Étude d'une fonction (2 points)

Soit la fonction f définie sur $\mathbb{R} - \{2\}$ par : $f(x) = x + 5 + \frac{9}{x - 2}$

- a) Sur quel ensemble la fonction f est-elle dérivable ? Déterminer alors f'(x) \wedge On factorisera la dérivée
- b) En déduire les variations de la fonction f puis dresser le tableau de variation en calculant les extremum éventuels. (On ne demande pas de calculer les limites)

Exercice 3

Calcul de limites (4 points)

On justifiera avec soin les limites suivantes :

- a) Déterminer $\lim_{\substack{x \to 2 \\ x > 2}} \frac{3x 1}{4 x^2}$
- b) Déterminer $\lim_{x \to +\infty} \frac{\sin x}{x}$, en déduire $\lim_{x \to +\infty} x^2 + x \sin x$
- c) Déterminer $\lim_{x \to -\infty} \sqrt{\frac{2x+1}{x+1}}$

Exercice 4

Vrai - faux (2 points)

Pour chacune des affirmations suivantes, préciser si elle est vraie ou fausse. Justifier votre réponse.

- a) Si pour tout x > 0, on a $f(x) \le \frac{2}{x}$ alors $\lim_{x \to +\infty} f(x) = 0$.
- b) La fonction f définie par : $f(x) = \sqrt{x^2 4}$ est dérivable sur $] \infty; -2[$

Exercice 5

Fonction rationnelle et fonctions auxiliaire

(10 points)

Soit la fonction
$$f$$
 définie sur \mathbb{R} par : $f(x) = \frac{x^3 - 4}{x^2 + 1}$

On note \mathscr{C}_f sa courbe représentative dans un repère orthonormé (unité 1cm)

1) Étude d'une fonction auxiliaire

On pose :
$$g(x) = x^3 + 3x + 8$$

- a) Étudier les variations de la fonction g.
- b) Montrer que l'équation g(x) = 0 admet une unique solution α sur \mathbb{R} et que $\alpha \in [-2,0]$
- c) Déterminer un encadrement à 10^{-3} à l'aide de votre calculatrice.
- d) Préciser le signe de g(x) selon les valeurs de x

2) Étude de la fontion f

- a) Déterminer les limites de f en $+\infty$ et $-\infty$
- b) Calculer f'(x) et montrer que : $f'(x) = \frac{x(x^3 + 3x + 8)}{(x^2 + 1)^2}$
- c) À l'aide d'un tableau de signe donner le signe de f'(x) puis dresser le tableau de variation de la fonction f.
- d) En écrivant $f(x) = \frac{x(x^3 4)}{x^3 + x}$, montrer alors que $f(\alpha) = \frac{3}{2}\alpha$
- e) En déduire un encadrement de $f(\alpha)$
- f) Existe-t-il des tangentes à \mathcal{C}_f parallèles à la droite d'équation y = x?

3) Représentation de la fonction f

a) Recopier puis remplir le tableau de valeurs suivants :

х	-4	-2,5	-1	0	1	2	4
f(x)							

b) Tracer la courbe \mathscr{C}_f en indiquant les tangentes horizontales et en s'aidant du tableau de valeurs de la question précédente.