Contrôle de mathématiques

Mercredi 06 février 2019

Exercice 1

Application du cours

(7 points)

- 1) Écrire sous la forme algébrique : $z = \frac{7 + 4i}{3 2i}$
- 2) Soit l'équation (E) dans l'ensemble \mathbb{C} : $z^3 + 4z^2 + 2z 28 = 0$
 - a) Montrer que 2 est solution de l'équation (E).
 - b) Montrer que l'on peut mettre l'équation (E) sous la forme : $(z-2)(z^2+6z+14)=0$.
 - c) Résoudre alors l'équation (E).
- 3) On donne le nombre complexe : $z = (-\sqrt{3} + i)^{2019}$
 - a) Donner la forme trigonométrique et exponentielle du nombre $-\sqrt{3} + i$
 - b) Montrer que le nombre z est un imaginaire pur.
- 4) Déterminer et représenter les ensembles des point M d'affixe z dans les cas suivants : On prendra comme unité 2 cm sur les deux axes du plan complexe $(O, \overrightarrow{u}, \overrightarrow{v})$.

a)
$$|z - 1| = |z - i|$$

b)
$$|z + i| = 2$$

EXERCICE 2

Suite (5 points)

On définit la suite de nombres complexes (z_n) : $z_0 = 1$ et, $\forall n \in \mathbb{N}, z_{n+1} = \frac{1}{3}z_n + \frac{2}{3}i$.

On se place dans un plan muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

Pour tout entier naturel n, on note A_n le point du plan d'affixe z_n .

Pour tout entier naturel n, on pose $u_n = z_n - i$ et on note B_n le point d'affixe u_n . On note C le point d'affixe i.

1) Exprimer u_{n+1} en fonction de u_n , pour tout entier naturel n.

Que peut-on en déduire pour la suite (u_n) ?

- 2) Démontrer que : $\forall n \in \mathbb{N}, \ u_n = \left(\frac{1}{3}\right)^n (1-i)$.
- 3) a) Pour tout entier naturel n, calculer, en fonction de n, le module de u_n .
 - b) Démontrer que $\lim_{n\to+\infty} |z_n i| = 0$.
 - c) Quelle interprétation géométrique peut-on donner de ce résultat?

PAUL MILAN 1 TERMINALE S

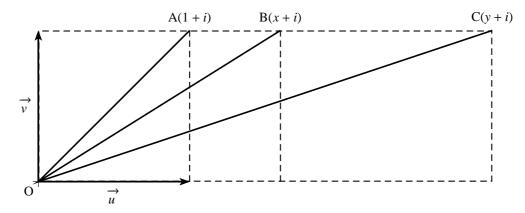
Exercice 3

Propriété géométrique

(8 points)

Dans cet exercice, x et y sont des nombres réels supérieurs à 1.

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives : $z_A = 1 + i$, $z_B = x + i$ et $z_C = y + i$.



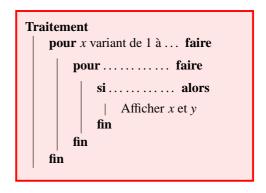
On cherche les valeurs éventuelles des réels x et y, supérieures à 1, pour lesquelles :

$$OC = OA \times OB$$
 et $(\overrightarrow{u}, \overrightarrow{OB}) + (\overrightarrow{u}, \overrightarrow{OC}) = (\overrightarrow{u}, \overrightarrow{OA})$.

- 1) Démontrer que si OC = OA × OB, alors $y^2 = 2x^2 + 1$.
- 2) Reproduire sur la copie et compléter l'algorithme ci-contre pour qu'il affiche tous les couples (*x*, *y*) tels que :

$$\begin{cases} y^2 = 2x^2 + 1\\ x \text{ et } y \text{ sont des nombres entiers}\\ 1 \le x \le 10 \text{ et } 1 \le y \le 10 \end{cases}$$

Lorsque l'on exécute cet algorithme, il affiche les valeurs 2 et 3.



- 3) Étude d'un cas particulier : dans cette question seulement, on prend x = 2 et y = 3.
 - a) Donner le module et un argument de z_A .
 - b) Montrer que $OC = OA \times OB$.
 - c) Montrer que $z_B z_C = 5z_A$ et en déduire que $(\overrightarrow{u}, \overrightarrow{OB}) + (\overrightarrow{u}, \overrightarrow{OC}) = (\overrightarrow{u}, \overrightarrow{OA})$.
- 4) On revient au cas général, et on cherche s'il existe d'autres valeurs des réels x et y telles que les points A, B et C vérifient les deux conditions :

$$OC = OA \times OB \quad \text{et } (\overrightarrow{u}, \overrightarrow{OB}) + (\overrightarrow{u}, \overrightarrow{OC}) = (\overrightarrow{u}, \overrightarrow{OA}).$$

- a) Montrer que : $(\overrightarrow{u}, \overrightarrow{OB}) + (\overrightarrow{u}, \overrightarrow{OC}) = (\overrightarrow{u}, \overrightarrow{OA}) \Rightarrow \arg \left[\frac{(x+i)(y+i)}{1+i}\right] = 0$ [2 π]. En déduire que sous cette condition : x + y xy + 1 = 0.
- b) Démontrer que si les deux conditions sont vérifiées et que de plus $x \ne 1$, alors :

$$y = \sqrt{2x^2 + 1}$$
 et $y = \frac{x+1}{x-1}$.

5) Soit les fonctions f et g définies sur]1; $+\infty$ [par : $f(x) = \sqrt{2x^2 + 1}$ et $g(x) = \frac{x+1}{x-1}$. Déterminer le nombre de solutions du problème initial.

On pourra utiliser la fonction h définie sur l'intervalle]1; $+\infty$ [par h(x) = f(x) - g(x) et s'appuyer sur la copie d'écran d'un logiciel de calcul formel donnée ci-dessous.

$$f(x) := \operatorname{sqrt}(2 * x^2 + 1)$$

$$x \to \sqrt{2 * x^2 + 1}$$

$$deriver(f)$$

$$x \to \frac{2 * x}{\sqrt{2 * x^2 + 1}}$$

$$g(x) := (x + 1)/(x - 1)$$

$$x \to \frac{x + 1}{x - 1}$$

$$deriver(g)$$

$$x \to -\frac{2}{(x - 1)^2}$$