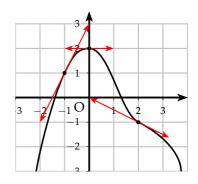
Rappels sur la dérivabilité. Compléments et convexité

Définition

EXERCICE 1

À l'aide de la représentation graphique ci-contre de la fonction f, remplir le tableau suivant :

x	-1	0	2
f(x)			
f'(x)			

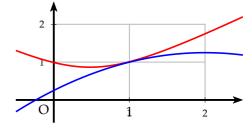


EXERCICE 2

On a représenté les courbes des fonctions f et g:

$$f(x) = \sqrt{x^2 - x + 1}$$
 et $g(x) = -\frac{1}{4}x^2 + x + \frac{1}{4}$

- 1) Que peut-on conjecturer pour ces deux courbes au point d'abscisse 1?
- 2) Démontrer la conjecture.



Calculs de dérivées

EXERCICE 3

Dans chaque cas, donner le domaine de dérivabilité puis calculer la fonction dérivée f' de la fonction f en cherchant à factoriser f'.

1)
$$f(x) = \frac{x^3 - 3x^2 + x - 1}{6}$$

4)
$$f(x) = \frac{x^2 + x - 2}{x^2 + x + 1}$$

2)
$$f(x) = \frac{1-2x}{x-2}$$

5)
$$f(x) = (x^2 + 2x - 3)^2$$

3)
$$f(x) = x - 6 + \frac{9}{x - 1}$$

$$6) f(x) = \left(\frac{x+1}{x+2}\right)^3$$

EXERCICE 4

Dans chaque cas, donner le domaine de dérivabilité puis calculer la fonction dérivée f' de la fonction f en cherchant à factoriser f'.

$$1) \ f(x) = \sqrt{4 - x}$$

2)
$$f(x) = \sqrt{\frac{x+1}{2-x}}$$

1)
$$f(x) = \sqrt{4-x}$$
 2) $f(x) = \sqrt{\frac{x+1}{2-x}}$ 3) $f(x) = \frac{x+1}{\sqrt{x^2+x+1}}$

EXERCICE 5

Dans chaque cas, donner le domaine de dérivabilité puis calculer la fonction dérivée f' de la fonction f.

1)
$$f(x) = (x^2 + 1)e^x$$

2)
$$f(x) = e^{-x+2}$$

3)
$$f(x) = xe^{-x}$$

4)
$$f(x) = e^{x^2 - x}$$

4)
$$f(x) = e^{x^2 - x}$$
 5) $f(x) = e^{\frac{x}{x - 1}}$ 6) $f(x) = \cos 2x$

$$6) \ f(x) = \cos 2x$$

Équation de la tangente

EXERCICE 6

Dans chacun des cas, écrire l'équation de la tangente à la courbe \mathcal{C}_f de f au point d'abscisse indiqué.

1)
$$f(x) = x^3 + x^2 - 3x$$
 $a = 1$

2)
$$f(x) = \frac{x}{x^2 + 1}$$
 $a = 2$

EXERCICE 7

Soit la fonction f définie sur $\mathbb{R} - \{-1\}$ par : $f(x) = \frac{x^2 - 3x + 1}{x + 1}$

- 1) Calculer les limites en -1 et en $+\infty$ et $-\infty$
- 2) Calculer la fonction dérivée de la fonction *f* .
- 3) Dresser le tableau de variation de la fonction f. On calculera les valeurs approchées des extremum de la fonction f à 10^{-2} .
- 4) Existe-t-il des tangentes à \mathcal{C}_f parallèles à la droite d'équation y = -4x 5? Si oui, donner l'équation de cette ou ces tangente(s).
- 5) Existe-t-il des tangentes à \mathcal{C}_f parallèles à la droite d'équation 3x-2y=0? Si oui, donner l'équation de cette ou ces tangente(s).
- 6) Vérifier ces résultats sur votre calculatrice. Fenêtre : $x \in [-15; 13]$ et $y \in [-20; 10]$ et graduation : 5 sur les deux axes.

EXERCICE 8

Soit la fonction f définie par : $f(x) = \frac{\sqrt{5x+1}}{x}$

- 1) a) Déterminer l'ensemble de définition de *f* .
 - b) Déterminer les limites en 0 et en $+\infty$.
- 2) a) Sur quel ensemble la fonction *f* est-elle dérivable?
 - b) Déterminer alors la fonction dérivée f'.
 - c) Déterminer le signe de f' puis dresser le tableau de variation de f.
- 3) a) Que peut-on dire de la tangente à \mathscr{C}_f en $-\frac{1}{5}$?
 - b) Représenter la courbe \mathscr{C}_f .

Fonction composée

EXERCICE 9

Soit les fonction f et g définies par : $f(x) = \sqrt{x^3 - 3x + 3}$ et $g(x) = x^3 - 3x + 3$.

- 1) Démontrer que l'équation g(x) = 0 admet une unique solution α sur \mathbb{R} . Donner, à l'aide de la calculatrice, une valeur approchée de α au centième.
- 2) En déduire les ensembles de définition et de dérivation de f.
- 3) Dresser le tableau de variation de f à l'aide de la fonction g.

Convexité

EXERCICE 10

- 1) Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^3 2x^2 + 3x + 1$. Étudier la convexité de la fonction f sur \mathbb{R} .
- 2) Soit la fonction g définie sur \mathbb{R} par : $g(x) = xe^{-x}$. Étudier la convexité de la fonction g sur \mathbb{R} .

EXERCICE 11

Soit la fonction f définie sur \mathbb{R}^* par : $f(x) = \frac{e^x}{x}$

- 1) Montrer que $f''(x) = \frac{(x^2 2x + 2)e^x}{x^3}$.
- 2) En déduire un point d'inflexion éventuel de la courbe \mathscr{C}_f .

EXERCICE 12

Soit la fonction f définie sur \mathbb{R} par : $f(x) = (x^2 + 2)e^x$

- 1) Calculer f' puis f''.
- 2) En déduire la convexité et d'éventuels points d'inflexion de la courbe \mathscr{C}_f .

EXERCICE 13

Soit f la fonction définie sur \mathbb{R} par : $f(x) = xe^{x^2-1}$.

- 1) a) Déterminer f'(x).
 - b) En déduire la monotonie de f sur \mathbb{R} .
- 2) a) Montrer que, pour $x \in \mathbb{R}$: $f''(x) = 2x(2x^2 + 3)e^{x^2 1}$.
 - b) Déterminer l'intervalle sur lequel la fonction f est convexe.
- 3) Soit h la fonction définie sur \mathbb{R} par : h(x) = x f(x). On admet que l'inéquation $1 e^{x^2 1} \ge 0$ a pour ensemble de solutions l'intervalle [-1; 1].

Déterminer le signe de h(x) sur [-1; 1] et en déduire la position relative de la courbe \mathcal{C}_f et de la droite d d'équation y = x sur [-1; 1].

Que peut-on déduire sur la courbe \mathcal{C}_f au point d'abscisse 0?