Contrôle de mathématiques

Lundi 30 novembre 2020

Exercice 1

Limites (3 points)

Déterminer les limites suivantes en justifiant avec soin :

1)
$$\lim_{x \to -\infty} \frac{2x^2 - 7x + 1}{x - 3}$$
 2) $\lim_{x \to 1} \frac{e^x - 3}{(x - 1)^2}$ 3) $\lim_{x \to 2^-} \sqrt{\frac{5}{2 - x}}$

2)
$$\lim_{x \to 1} \frac{e^x - 3}{(x - 1)^2}$$

3)
$$\lim_{x\to 2^-} \sqrt{\frac{5}{2-x}}$$

Exercice 2

Continuité (3 points)

Soit le fonction f définie sur \mathbb{R} par : $\begin{cases} f(x) = x \cos \frac{1}{x} & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}$

- 1) Rappeler la définition de la continuité en a pour une fonction f. Que cela signifie-t-il géométriquement?
- 2) a) Tracer l'allure de la fonction f pour $x \neq 0$ sur [-2; 2]. (unité graphique 2 cm sur les deux axes) Que peut-on conjecturer sur la continuité de f en 0?
 - b) Démontrer cette conjecture.

EXERCICE 3

Vrai-Faux (5 points)

Pour les proposition suivantes, préciser si elle est vraie ou non en justifiant votre réponse.

- 1) **Proposition 1:** $\forall x \in]0; +\infty[, f(x) \le \frac{2}{r} \Rightarrow \lim_{r \to +\infty} f(x) = 0$ ».
- 2) **Proposition 2:** $\forall x \in]0$; $+\infty[$, $2+\frac{1}{r} \leqslant f(x) \leqslant 2+\frac{4}{r} \Rightarrow \lim_{x \to +\infty} f(x) = 2$ ».
- 3) Soit la fonction f définie sur \mathbb{R} de tableau de variation suivant :

х	$-\infty$	0	+∞
f(x)	0	-1	+∞

Proposition 3: «L'équation f(x) = 1 admet une unique solution sur \mathbb{R} ».

4) On admet que l'équation $x^3 + 2x - 2 = 0$ admet une unique solution α sur \mathbb{R} .

Proposition 4 : « Une valeur approchée à 10^{-1} près de α est 0.7 ».

Exercice 4

Équation, valeur approchée et limite d'une suite

(9 points)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = (x+2)e^{x-4} - 2$.

Partie A

- 1) Déterminer la limite de la fonction f en $+\infty$. On admet que $\lim_{x\to -\infty} f(x) = -2$.
- 2) Déterminer f'(x) puis dresser le tableau de variations de la fonction f.
- 3) a) Montrer que f(x) = 0 admet une unique solution α sur \mathbb{R} puis que $\alpha \in [0; 4]$
 - b) À l'aide de l'algorithme par dichotomie, donner un encadrement d'amplitude 10^{-3} de α ainsi que le nombre de boucles nécessaires à son établissement.
 - c) En déduire le signe de la fonction f sur \mathbb{R} .

Partie B

Soit la suite u_n définie sur \mathbb{R} par : $\begin{cases} u_0 = 2 \\ u_{n+1} = f(u_n) \end{cases}$

- 1) a) D'après l'étude de la fonction f, montrer que pour tout $n \in \mathbb{N}$, $u_n \ge -3$.
 - b) Montrer par récurrence que : $\forall n \in \mathbb{N}, \ u_{n+1} \leq u_n$.
 - c) En déduire que la suite (u_n) est convergente vers ℓ .
- 2) a) Montrer que -2 et 4 sont solutions de l'équation f(x) = x.
 - b) En déduire la limite ℓ de la suite (u_n) .