Devoir à rendre pour le vendredi 10 novembre 2017

Exercice 1

Divisibilité (3 points)

1) Déterminer les entiers relatifs n tels que (n-4) divise (3n-17).

2) Soient a = 6k - 2 et b = 4k + 3 avec $k \in \mathbb{Z}$. Montrer que si d divise a et b alors d divise 13. Quelles sont alors les valeurs possibles pour d?

Exercice 2

Reste (4 points)

1) Déterminer suivant les valeurs de $n \in \mathbb{N}$, le reste de la division par 5 de 2^n . On pourra donner la réponse sous la forme d'un tableau de congruence.

2) En déduire le reste de la division par 5 de 1357²⁰¹⁷

Exercice 3

Divisibilité (4 points)

- 1) Soit $n \in \mathbb{N}$. Démontrer que 7 divise $3^{2n+1} + 2^{4n+2}$
- 2) Démontrer que 13 divise $3^{126} + 5^{126}$

Exercice 4

Résolution dans \mathbb{N} (4 points)

On cherche à résoudre dans N, l'équation (E) d'inconnue $a: a^2 + 9 = 2^{40}$

- 1) Montrer que si a est solution de (E), alors a est impair.
- 2) On s'intéresse aux restes dans division par 8 de a^2 , a étant impair.

Recopier et compléter le tableau de congruence suivant :

$a \equiv (8)$	1	3	5	7
$a^2 \equiv (8)$				

Que pouvez-vous dire du reste de $a^2 + 9$ dans la division par 8?

3) En déduire que l'équation (E) n'a pas de solution.

Exercice 5

Suites (5 points)

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = 9 \times 2^n - 6$.

- 1) Montrer que pour $n \ge 1$, le terme u_n est divisible par 6.
- 2) Soit la suite (v_n) définie sur \mathbb{N}^* par : $v_n = \frac{u_n}{6}$.

Un nombre premier est un entier naturel qui admet exactement deux diviseurs 1 et luimême. Par exemple : 2, 3, 5, 7, 11, 13,... sont des nombres premiers.

On considère l'affirmation : « pour tout entier n non nul, v_n est un nombre premier ». Indiquer si cette affirmation est vraie ou fausse en justifiant la réponse.

DEVOIR DE MATHÉMATIQUES

- 3) a) En remarquant que $2^4 \equiv 1$ (5), montrer que si n est de la forme (4k + 2), avec $k \in \mathbb{N}$, alors u_n est divisible par 5.
 - b) Le nombre u_n est-il divisible par 5 pour les autres valeurs de l'entier n? Justifier.